
The Azure Cloud-Native
Architecture Mapbook
Explore Microsoft's cloud infrastructure, application,
data, and security architecture

Stéphane Eyskens | Ed Price

The A
zure Cloud N

ative
Architecture M

apbook
Stephane Eyskens | Ed Price

Things you will learn:

• Gain overarching architectural
knowledge of the Microsoft Azure
cloud platform

• Explore the possibilities of building
a full Azure solution by considering
diff erent architectural perspectives

• Implement best practices for architecting
and deploying Azure infrastructure

• Review diff erent patterns for building a
distributed application with ecosystem
frameworks and solutions

• Get to grips with cloud-native concepts
using containerized workloads

• Work with AKS (Azure Kubernetes
Service) and use it with service mesh
technologies to design a microservices
hosting platform

Azure off ers a wide range of services that enable a million ways to architect your solutions.
Complete with original maps and expert analysis, this book will help you to explore Azure and
choose the best solutions for your unique requirements.

Starting with the key aspects of architecture, this book shows you how to map diff erent architectural
perspectives and covers a variety of use cases for each architectural discipline. You'll get acquainted
with the basic cloud vocabulary and learn which strategic aspects to consider for a successful
cloud journey. As you advance through the chapters, you'll understand technical considerations
from the perspective of a solutions architect. You'll then explore infrastructure aspects, such as
network, disaster recovery, and high availability, and leverage Infrastructure as Code (IaC) through
ARM templates, Bicep, and Terraform. The book also guides you through cloud design patterns,
distributed architecture, and ecosystem solutions, such as Dapr, from an application architect's
perspective. You'll work with both traditional (ETL and OLAP) and modern data practices (big data
and advanced analytics) in the cloud and nally get to grips with cloud-native security.

By the end of this book, you'll have picked up best practices and more rounded knowledge of the
diff erent architectural perspectives.

The Azure Cloud-Native
Architecture Mapbook

The Azure
Cloud‑Native
Architecture
Mapbook

Explore Microsoft's cloud infrastructure, application,
data, and security architecture

Stéphane Eyskens

Ed Price

BIRMINGHAM—MUMBAI

The Azure Cloud‑Native Architecture Mapbook
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Denim Pinto
Senior Editor: Storm Mann
Content Development Editor: Nithya Sadanandan
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Nilesh Mohite

First published: February 2021
Production reference: 1160221

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-232-5

www.packt.com

http://www.packt.com

To my wife, Diana Lucic, who designed all the maps of this book.

– Stéphane Eyskens

To my sons, Ben and Yoav, for showing me how talent and creativity evolve.
To Tsippi and Shlomo Bobbe, for their love, support, and inspiration.

– Ed Price

Contributors

About the authors
Stéphane Eyskens is an Azure solutions architect and a digital transformation advocate,
helping organizations to get better results out of their cloud investments. As an MVP, he is
an active contributor to the Microsoft Tech Community and has worked on multiple open
source projects available on GitHub. Stéphane is also a Pluralsight assessment author, as
well as the author of multiple books and online recordings.

Ed Price is a senior program manager in engineering at Microsoft, with an MBA in
technology management. He leads Microsoft's efforts to publish reference architectures
on the Azure Architecture Center (http://aka.ms/Architectures). Previously, he
drove data center deployment and customer feedback, and he ran Microsoft's customer
feedback programs for Azure development, Service Fabric, IoT, Functions, and Visual
Studio. He was also a technical writer at Microsoft for 6 years and helped lead TechNet
Wiki. He is the co-author of five books, including Learn to Program with Small Basic and
ASP.NET Core 5 for Beginners, available from Packt.

http://aka.ms/Architectures

About the reviewers
Giorgos-Chrysovalantis Grammatikos is an Azure solutions architect with Tisski Ltd.
He is an IT pro with over 10 years of experience in the industry, has achieved various
Azure and other Microsoft certifications, and has been an Azure MVP since 2018. His
specialization is in various Microsoft technologies including the Azure cloud, SQL Server,
Power BI, and Hyper-V. He is an active member of the Microsoft community, blogging on
his website cloudopszone.com and posting technical articles on the Microsoft wiki and
dev blogs. He is a frequent public speaker at meetups and various Microsoft Azure events.

Sjoukje Zaal is a Microsoft chief technical officer at Capgemini, a Microsoft regional
director, and a Microsoft Azure MVP with over 20 years of experience providing
architecture, development, consultancy, and design expertise. She mainly focuses on
cloud, security, productivity, and IoT.

She loves to share her knowledge and is active in the Microsoft community as a
co-founder of the user groups Tech Daily Chronicle, Global XR Community, and the
Mixed Reality User Group. She is also a board member of Azure Thursdays and Global
Azure. Sjoukje is an international speaker, is involved in organizing many events, and has
written several books and blogs. Sjoukje is also part of the MVP Diversity and Inclusion
Advisory Board.

http://cloudopszone.com

function signUp(service) {
if (service.type === ‘Azure’&&

 service.accountIsFree === true){
 return true;
 }

}
signUp(Azure); // true

Get help with
your project.

Talk to a
sales specialist >

Make your vision real.
Start experimenting with
free cloud services.
Start free >Let’s go. Start free >

Talk to a
sales specialist >

https://aka.ms/AA65vru
https://aka.ms/AA67rqw
https://aka.ms/AA67rqw

Table of Contents
Preface vii

Section 1: Solution and Infrastructure 1

1
Getting Started as an Azure Architect 3

Technical requirements 4
Getting to know architectural
duties 4
Enterprise architects 4
Domain architects 5
Solution architects 5
Data architects 6
Technical architects 7
Security architects 8
Infrastructure architects 10
Application architects 10
Azure architects 11
Architects versus engineers 11

Getting started with the
essential cloud vocabulary 12
Cloud service models map 12
IaaS (Infrastructure as a Service) 13
PaaS (Platform as a Service) 13

FaaS (Function as a Service) 14
CaaS (Containers as a Service) 15
DBaaS (Database as a Service) 16
XaaS or *aaS (Anything as a Service) 16

Introducing Azure architecture
maps 17
How to read a map 18

Understanding the key factors
of a successful cloud journey 19
Defining the vision with the right
stakeholders 19
Defining the strategy with the right
stakeholders 20
Starting implementation with the right
stakeholders 20
Practical scenario 21

Summary 25

ii Table of Contents

2
Solution Architecture 27

Technical requirements 28
The solution architecture map 28
Zooming in on the different
workload types 30
Understanding systems of engagement 30
Understanding systems of record 32
Understanding systems of insight 34
Understanding systems of interaction
(IPaaS) 36
Looking at cross-cutting concerns and
non-functional requirements 41
Looking at cross-cutting concerns and
the cloud journey 52

Zooming in on containerization 52

Solution architecture use case 55
Looking at a business scenario 55
Using keywords 55
Using the solution architecture map
against the requirements 56
Building the target reference
architecture 58
Code view of our workflow-based
reference architecture 62
Looking at the code in action 67
Understanding the gaps in our
reference architecture 72

Summary 73

3
Infrastructure Design 75

Technical requirements 76
The Azure infrastructure
architecture map 76
Zooming in on networking 78
The most common architecture 80
Data center connectivity options 81
Zoning 82
Routing and firewalling 83

Zooming in on monitoring 84
Zooming in on high availability
and disaster recovery 90
Zooming in on backup and
restore 94
Zooming in on HPC 96

AKS infrastructure 97
Exploring networking options with AKS 99
Exploring deployment options with AKS 104
Monitoring AKS 106
Exploring AKS storage options 106
Scaling AKS 107
Exploring miscellaneous aspects 108
AKS and service meshes for
microservices versus Azure native
services 109
AKS reference architecture for
microservices – cluster boundaries 112
AKS reference architecture for
microservices – cluster internals 116

Summary 118

Table of Contents iii

4
Infrastructure Deployment 119

Technical requirements 120
Introducing Continuous
Integration and Continuous
Deployment (CI/CD) 120
Introducing the CI/CD process 121
Introducing the IaC CI/CD process 122

The Azure deployment map 124
Getting started with the Azure
CLI, PowerShell, and Azure
Cloud Shell 127
Playing with the Azure CLI from within
Azure Cloud Shell 127
Using PowerShell from within Azure
Cloud Shell 132
Combining PowerShell and the Azure
CLI from within Azure Cloud Shell 134

Understanding the one that
rules them all 135
Diving into ARM templates 137
Getting started with ARM 137

Understanding the ARM template
deployment methods 137
Understanding the ARM template
deployment scopes 138
Understanding the ARM template
deployment modes 142
Understanding the anatomy of an ARM
template 144
Building a concrete example using
linked templates 147

Getting started with Azure
Bicep 159
Getting started with Terraform 162
Zooming in on a reference
architecture with Azure DevOps 168
Using a simple approach to an IaC
factory 169
Using an advanced approach to an IaC
factory 172

Summary 175

Section 2: Application Development,
Data, and Security 177

5
Application Architecture 179

Technical requirements 180
Understanding cloud and
cloud-native development 181
Exploring the Azure Application
Architecture Map 183

Zooming in on data 185
Zooming in on cloud design patterns 186
Dealing with cloud-native patterns 193
Understanding the COMMODITIES
top-level group 201

iv Table of Contents

Exploring EDAs 204
Inspecting the Azure Service Bus
configuration 210
Adding the other components to the
mix 214

Developing microservices 216
Using Dapr for microservices 217

Understanding Dapr components 219
Getting started with Dapr SDKs 220
Looking at our scenario 222
Developing our solution 223
Testing our solution 229
Combining Dapr and the API gateway
of Azure APIM 232

Summary 238

6
Data Architecture 239

Technical requirements 240
Looking at the data
architecture map 240
Analyzing traditional data
practices 242
Introducing the OLAP and OLTP
practices 243
Introducing the ETL practice 243
Introducing the RDBMS practice 244

Delving into modern data
services and practices 245
Introducing the ELT practice 246
Exploring NoSQL services 246
Learning about object stores 248

Diving into big data services 249
Ingesting big data 250
Exploring big data analytics 251
Azure-integrated open source big data
solutions 253

Introducing AI solutions 253
Understanding machine learning and
deep learning 254
Integrating AI solutions 256

Dealing with other data
concerns 257
Introducing Azure Cognitive Search 257
Sharing data with partners and
customers (B2B) 258
Migrating data 258
Governing data 259

Getting our hands dirty with a
near real-time data streaming
use case 259
Setting up the Power BI workspace 260
Setting up the Azure Event Hubs
instance 260
Setting up Stream Analytics (SA) 261
Testing the code 263

Summary 266

Table of Contents v

7
Security Architecture 267

Technical requirements 268
Introducing cloud-native
security 268
Reviewing the security
architecture map 270
Exploring the recurrent services
security features 272
Exploring the recurrent data services
security features 280
Zooming in on encryption 282
Managing your security posture 286
Zooming in on identity 290

Delving into the most recurrent
Azure security topics 294
Exploring Azure managed identities in
depth 294
Demystifying SAS 297
Understanding APL and its impact on
network flows 298
Understanding Azure resource firewalls 301

Adding the security bits to our
Contoso
use case 302
Summary 308

Section 3: Summary 309

8
Summary and Industry Scenarios 311

Revisiting our architectures 312
Sample architecture 312
Solution architecture 313
Infrastructure architecture 315
Azure deployment 316
Application architecture 317
Data architecture 318
Security architecture 320
Visiting the verticals 321

Automotive and transportation
scenarios 321
Predictive insights with vehicle
telematics 321
Predictive aircraft engine monitoring 322
IoT analytics for autonomous driving 323

Banking and financial services
scenarios 323
Banking system cloud transformation 323
Decentralized trust using blockchain 324
Additional financial services
architectures 324

Gaming scenarios 325
Low-latency multiplayer gaming 326
Gaming using MySQL or Cosmos DB 326

Healthcare scenarios 326
Building a telehealth system on Azure 327
Medical data storage architectures 327
AI healthcare solutions 328
Predicting length of stay using SQL
Server R Services 328

vi Table of Contents

Producing and consuming IoT
healthcare data 328
Confidential computing on a
healthcare platform 329

Manufacturing scenarios 329
Supply chain track and trace 330
Industrial IoT analytics 330
AI and analytics manufacturing
architectures 330

Oil and gas scenarios 331
Run reservoir simulation software on
Azure 331
Oil and gas tank level forecasting 332
IoT monitor and manage loops 332

Retail scenarios 333
Retail and e-commerce Azure database
architectures 333
Demand forecasting with Spark on
HDInsight 334
Demand forecasting with machine
learning 334
AI retail scenarios 334
Architecture for buy online, pick up in
store 335

The unique values of this book 336
Summary 337
Why subscribe? 339

Other Books You May Enjoy 340

Index 343

Preface
Have you ever visited a large city on your own? Sometimes you get lost, and sometimes
you lose time. However, you can make your trip more valuable by taking an expert-guided
tour. That's what this book is: an expert-guided tour of Azure. Our different maps will
be your compass to sail the broad Azure landscape. The Microsoft cloud platform offers
a wide range of services, providing a million ways to architect your solutions. This book
uses original maps and expert analysis to help you explore Azure and choose the best
solutions for your unique requirements. Beyond maps, the book is inspired by real-world
situations and challenges. We will share typical and cross-industry concerns to help you
become a better Azure architect. Our real-world-inspired architecture diagrams and use
cases should put you in a better position to tackle your own challenges. Although an
architecture role may be high-level, we also wanted to dive deeper into some topics and
make you work harder on some use cases. In this respect, you will have some hands-on
work to do too. However, our primary objective is to make you stronger in the various
architecture disciplines that are scoped to Azure and that every Azure architect should be
comfortable with.

Who this book is for
This book is intended for aspiring and confirmed Azure architects. This book is broad and
encompasses multiple architecture disciplines and concepts, so you should ideally have a
broad skillset to enjoy the book. Nevertheless, IT engineers and developers will also ramp
up their knowledge and find value in this book.

viii Preface

What this book covers
Chapter 1, Getting Started as an Azure Architect, starts by sharing a view of the different
architecture disciplines. We define the roles and responsibilities of the various architects
(enterprise, solution, infrastructure, data, and security). The rationale of going through
these definitions lies in the fact that, from our experience, we have noticed some knowledge
gaps in what the different stakeholders are doing. This often leads to turf wars, which can
be avoided simply by understanding the broader picture. We then introduce our maps, and
we help you understand how to properly conduct a cloud strategy and what the key aspects
are that will make your cloud journey successful. In a nutshell, we give you a glimpse into
what it feels like to be an Azure architect who has to deal with all these different disciplines,
and who sometimes must report to top management on strategic aspects.

Chapter 2, Solution Architecture, covers key aspects to consider when building a cloud
solution. A solution architect is responsible for the end-to-end aspects of a solution, from
its development to its monitoring. A solution architect knows what Agile methodologies
are, as well as what ITIL, TOGAF, and COBIT are. They are the cornerstone of a solution,
its main pillar. The primary role of a solution architect is to assemble all the building
blocks to make a consistent and coherent design, as well as to talk to various stakeholders.
Their stakeholders are other, more specialized architects, developers, and IT engineers,
as well as enterprise architects and management. This chapter remains high-level from
a technical perspective because we will still envision Azure as a whole. We share the
solution architecture map, which encompasses many Azure services, and we explore
multiple dimensions around the non-functional requirements. We also zoom in on
Azure's container platform offering, which has been booming and expanding greatly over
the last few years. Lastly, we will walk you through a concrete use case and a glimpse into
what comes next, including a deeper dive into the technical and technological aspects.

Chapter 3, Infrastructure Design, delves deeper into technical matters. We will review the
typical infrastructure topologies and we will zoom into infrastructure-specific concerns
such as networking, monitoring, backup and restore, high availability, and disaster
recovery (for which we'll see a sample use case). Because containerization has become
mainstream, we will also dive into Azure Kubernetes Services (AKS) and unveil a
dedicated AKS architecture map. You will learn that AKS is not really a service like the
others, and we will walk you through a reference architecture to host a service mesh (for
microservices) in AKS.

Chapter 4, Infrastructure Deployment, is almost entirely hands-on! You will learn about
the different Infrastructure as Code (IaC) tools and frameworks. You will provision
some Azure services using Azure Resource Manager templates, Bicep, and Terraform.
Nevertheless, we won't forget our architecture glasses, so we will also look at the machinery
of a Continuous Integration and Continuous Delivery/Deployment (CI/CD) factory.

Preface ix

Chapter 5, Application Architecture, looks at what the development architecture would
look like for building an app on the Microsoft cloud. You may ask 10 different people
what cloud-native means, and you might receive 10 different answers. So, we will start by
explaining what we mean when we refer to the cloud and cloud-native solutions. Next, we
will review some modern design patterns, such as CQRS, Event Sourcing, and so on. In
the process, we will map them to the Azure services to help you identify how to bundle
the services together in order to build solutions based on these patterns. Lastly, we will
go through a microservices use case, using Dapr (Distributed Application Runtime),
which is a very recent and promising framework for developing distributed applications.
Throughout this chapter, our motto will be to not reinvent the wheel. Instead, leverage the
ecosystem to design and build your solutions.

Chapter 6, Data Architecture, explores how data is processed and stored. Data is the new
gold, and Azure contains many gold mines! In this chapter, we will consider traditional
and modern data practices in opposition to each other, and see how to use both in
Azure. We will also explore big data and artificial intelligence and analytics. At last, our
hands-on use case is based on a data-streaming scenario. We are going to build a real-time
dashboard, which consolidates aggregates of metrics from a fake speed detector (which
we have developed for you). A separate real-time tile will show all the vehicles that should
receive a fine (for breaking the law).

Chapter 7, Security Architecture, emphasizes and explains the importance of security in
the cloud. Security is everywhere, and it's even more important with the cloud. This tends
to awaken age-old fears and trepidations. This topic certainly deserves an entire book,
so (to avoid writing a second book) we decided to be very pragmatic and to focus on the
essential parts only. We start by giving you a glimpse into cloud-native security, to see
beyond the technology and what the required mindset is. We will then explain why there
is a paradigm shift in identity with the public cloud, by simply … proving it! Lastly, we
will focus on the most recurrent security services and topics in Azure, which you must
absolutely master as an Azure architect. Throughout the chapter, our motto will be to not
simply stack network layers. Instead, think further and modernize your security practices.

Chapter 8, Summary and Industry Scenarios, revisits the topics covered in the book and
consolidates our key ideas from each previous chapter. In other words, we'll identify what
the most important aspects to remember are. In addition, we'll look at several key industry
verticals through the lens of the previous chapters, to guide you through some existing
architectures that you can continue exploring after you complete the book. We'll finish
with some notes on the unique key values of this book, and a brief summary.

x Preface

To get the most out of this book
To enjoy the book and practice our hands-on exercises, you will of course need an Azure
subscription, and for the bravest readers (those who are implementing our use cases),
you'll also need Docker, Visual Studio 2019, and/or Visual Studio Code. All our code
samples are built in .NET Core. From a higher-level perspective, you'll be able to quickly
grasp the concepts in this book if you're already an architect or a senior developer/IT pro.
Don't worry if you need to use Google from time to time (to look up names and terms);
it's perfectly normal, as we explore the main architectural dimensions. (We do explain all
the basic concepts, but to keep the content focused for senior developers, senior IT pros,
and new architects, the book is written with a certain expectation of technical knowledge.)

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (the link is available in the next section).
Doing so will help you avoid any potential errors related to the copying and pasting
of code.

Download the example code files
You can download the maps, diagrams, and sample code for this book from GitHub
at https://github.com/PacktPublishing/The-Azure-Cloud-Native-
Architecture-Mapbook. In case there's an update to the code, it will be updated on
the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at http://bit.ly/3pp9vIH.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800562325_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook
https://github.com/PacktPublishing/
http://bit.ly/3pp9vIH
https://static.packt-cdn.com/downloads/9781800562325_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800562325_ColorImages.pdf

Preface xi

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "Locate and open the appsettings.json file, in the
netcoreapp3.1 folder."

A block of code is set as follows:

public class DataObject{

 private string[] sensorNames = new string[] { "Brussels",
 "Genval" };

 public string sensorName { get; private set; }

 public double speed { get; private set; }

 public string plateNumber { get; private set; }

 public DataObject()

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

public class DataObject{

 private string[] sensorNames = new string[] {
 "Brussels", "Genval" };

 public string sensorName { get; private set; }

 public double speed { get; private set; }

 public string plateNumber { get; private set; }

 public DataObject()

Any command-line input or output is written as follows:

$ az storage account list

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Choose the Custom Streaming data tile type."

Tips or important notes
Appear like this.

xii Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, select your
book, click the Errata Submission Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

In this section, we will first revise the different architecture practices and dimensions,
because the word architect is sometimes misunderstood or abused. We will share our
views on the different architecture dimensions that we cover throughout the book.
The initial chapter will set the scene for your journey. Then, we will get you started
with Azure and acquainted with the services that you can assemble to design and build
solutions. We will also focus on an essential foundation – the infrastructure – and you
will get to know how to leverage Infrastructure as Code and automation, to get an
optimal return on investment out of your cloud expenditures.

In this section, we will cover the following topics:

• Chapter 1, Getting Started as an Azure Architect

• Chapter 2, Solution Architecture

• Chapter 3, Infrastructure Design

• Chapter 4, Infrastructure Deployment

Section 1:
Solution and

Infrastructure

1
Getting Started as
an Azure Architect

In this chapter, we will focus on what an architect's role entails and explain the various
cloud service models that are made available by the Microsoft Azure platform. We will
describe how the numerous maps in this book are built, what they intend to demonstrate,
and how to make sense of them.

More specifically, in this chapter, we will cover the following topics:

• Getting to know architectural duties

• Getting started with the essential cloud vocabulary

• Introducing Azure architecture maps

• Understanding the key factors of a successful cloud journey

Our purpose is to help you learn the required vocabulary that is used across the book. You
will also understand the duties of an Azure architect. We will explain the most frequently
used service models and their typical associated use cases, which every Azure architect
should know. We start smoothly, but beware that the level of complexity will increase as
we go. Let's start by getting acquainted with the definition of an architect.

4 Getting Started as an Azure Architect

Technical requirements
The Maps provided in this chapter are available at https://github.com/
PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/
tree/master/Chapter01.

Getting to know architectural duties
Before we define what an Azure architect is, let's first define what an architect's role is
and how our maps specialize to reflect these different profiles. The word architect is used
everywhere on the IT planet. Many organizations have their own expectations when it
comes to defining the tasks and duties of an architect. Let's share our own definitions as
well as some illustrative diagrams.

Enterprise architects
Enterprise architects oversee the IT and business strategies, and they make sure that
every IT initiative is in line with the enterprise business goals. They are directly reporting
to the IT leadership and are sometimes scattered across business lines. They are also the
guardians of building coherent and consistent overall IT landscapes for their respective
companies. Given their broad role, enterprise architects have a helicopter view of the IT
landscape, and they are not directly dealing with deep-dive technical topics, nor are they
looking in detail at specific solutions or platforms, such as Azure, unless a company would
put all its assets in Azure. In terms of modeling, they often rely on the TOGAF (short for
The Open Group Architecture Framework) modeling framework and ArchiMate. The
typical type of diagrams they deal with looks like the following:

Figure 1.1 – Capability viewpoint: ArchiMate

As you can see, this is very high level and not directly related to any technology or
platform. Therefore, this book focusing on Azure is not intended for enterprise architects,
but they are, of course, still welcome to read it!

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter01
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter01
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter01

Getting to know architectural duties 5

Domain architects
Domain architects own a single domain, such as the cloud. In this case, the cloud is
broader than just Azure, as it would probably encompass both public and private cloud
providers. Domain architects are tech-savvy, and they define their domain roadmaps
while supervising domain-related initiatives. Compared to enterprise architects, their
scope is more limited, but it is still too broad to master the bits and bytes of an entire
domain. This book, and more particularly our generic maps, will certainly be of great
interest for cloud domain architects. Diagram-wise, the domain architects will also rely on
TOGAF and other architecture frameworks, but scoped to their domain.

Solution architects
Solution architects help different teams to build solutions. They have T-shaped skills,
which means that they are specialists in a given field (the base of the T), but they can also
collaborate across disciplines with the other experts (the top of the T). Solution architects
are usually in charge of designing solution diagrams, and they tackle non-functional
requirements, such as security, performance, and scalability. Their preferred readings
will be our chapter dedicated to solution architecture, as well as some reference
architectures. Solution architects may build both high-level technology-agnostic, and
platform-specific diagrams. Azure solution architects may build reference architectures,
such as, for instance, one that we can find on the Azure Architecture Center
(https://docs.microsoft.com/azure/architecture/):

Figure 1.2 – AI at the edge with Azure Stack

https://docs.microsoft.com/azure/architecture/

6 Getting Started as an Azure Architect

The preceding diagram illustrates how to leverage both Azure Stack and Azure, together
with artificial intelligence services. Such architectures can be instantiated per asset, but
still remain rather high-level. They depict the components and their interactions, and
must be completed by the non-functional requirements. We will explore this in more
detail in the next chapter.

Data architects
Data architects oversee the entire data landscape. They mostly focus on designing data
platforms, for storage, insights, and advanced analytics. They deal with data modeling,
data quality, and business intelligence, which consists of extracting valuable insights
from the data, in order to realize substantial business benefits. A well-organized data
architecture should ultimately deliver the DIKW (Data, Information, Knowledge,
Wisdom) pyramid as shown in Figure 1.3:

Figure 1.3 – DIKW pyramid

Organizations have a lot of data, from which they try to extract valuable information,
knowledge, and wisdom over time. The more you climb the pyramid, the higher the value.
Consider the following scenario to understand the DIKW pyramid:

Figure 1.4 – DIKW pyramid example

Getting to know architectural duties 7

Figure 1.4 shows that we start with raw data, which does not really make sense without
context. These are just numbers. At the information stage, we understand that 31 stands
for a day, 3 is March, and 3,000 is the number of visits. Now, these numbers mean
something. The knowledge block is self-explanatory. We have analyzed our data and
noticed that year after year, March 31 is a busy day. Thanks to this valuable insight, we
can take the wise decision to restock our warehouses up front to make sure we do not run
short on goods.

That is, among other things, the work of a data architect to help organizations learn from
their data.

Data is the new gold rush, and Azure has a ton of data services as part of its catalog, which
we will cover in Chapter 6, Data Architecture.

Technical architects
Technical architects have a deep vertical knowledge of a platform or technology
stack, and they have hands-on practical experience. They usually coach developers, IT
professionals, and DevOps engineers in the day-to-day implementation of a solution.
They contribute to reference architectures by zooming inside some of the high-level
components. For instance, if a reference architecture, designed by a solution architect, uses
Azure Kubernetes Services (AKS) as part of the diagram, the technical architect might
zoom inside the AKS cluster, to bring extra information on the cluster internals and some
specific technologies. To illustrate this, Figure 1.5 shows a high-level diagram a solution
architect might have done:

Figure 1.5 – Reference architecture example

8 Getting Started as an Azure Architect

Figure 1.6 shows the extra contribution of a technical architect:

Figure 1.6 – Reference architecture refined by a technical architect

We see that the reviewed diagram contains precise technologies, such as KEDA
(Kubernetes-based Event Driven Autoscaling), and Dapr (Distributed Application
Runtime), for both autoscaling and interactions with event and data stores.

The technical architect will mostly be interested in our detailed maps.

Security architects
In this hyper-connected world, the importance of security architecture has grown a lot.
Security architects have a vertical knowledge of the security field. They usually deal
with regulatory or in-house compliance requirements. The cloud and, more particularly,
the public cloud, often emphasizes security concerns (much more than for equivalent
on-premises systems and applications). With regard to diagrams, security architects
will add a security view (or request one) to the reference solution architectures, such as
the following:

Getting to know architectural duties 9

Figure 1.7 – Simplified security view example

In the preceding example, the focus is set on pure security concerns: encryption in transit
(TLS 1.2) between the browser and the web application firewall (WAF). The WAF
enforces a security ruleset to protect against the Open Web Application Security Project
(OWASP) top 10 vulnerabilities. The API gateway acts as a policy enforcement point
before it forwards the request to the backend service. The backend authenticates to the
database using managed service identity (MSI), and the database is encrypted at REST
with customer-managed keys. Figure 1.7 clearly emphasizes what security architects are
interested in.

However, as we will explore further in Chapter 7, Security Architecture, mastering cloud
and cloud-native security is a tough challenge for a traditional (on-premises) security
architect. Cloud native's defense in depth primarily relies on identity, while traditional
defense in depth relies heavily on the network perimeter. This gap is often a source of
tension between the cloud and non-cloud worlds.

10 Getting Started as an Azure Architect

Infrastructure architects
Infrastructure architects focus on building IT systems that host applications, or systems
that are sometimes shared across workloads. They play a prominent role in setting
up hybrid infrastructures, which bridge both the cloud and the on-premises world.
Their diagrams reflect an infrastructure-only view, often related to the concept of a
landing zone, which consists of defining how and where business assets will be hosted.
A typical infrastructure diagram that comes to mind for a hybrid setup is the Hub &
Spoke architecture (https://docs.microsoft.com/azure/architecture/
reference-architectures/hybrid-networking/hub-spoke):

Figure 1.8 – Hub and spoke architecture

Figure 1.8 is a simplified view of the hub and spoke, which, in reality, is much more
complex than this. We will explore this further in Chapter 3, Infrastructure Design. We
will also stress some important aspects related to legacy processes, so as to maximize the
chances of a successful cloud journey.

Application architects
Application architects focus on building features that are requested by the business.
Unlike other architects, they are not primarily concerned by non-functional requirements.
Their role is to enforce industry best practices and coding patterns in order to make
maintainable and readable applications. Their primary concerns are to integrate with
the various Azure services and SDKs, as well as leverage cloud and cloud-native design
patterns that are immensely different from traditional systems. Beyond this book, a good
source of information for them is the Microsoft documentation on cloud design patterns
(https://docs.microsoft.com/azure/architecture/patterns/).

https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/hub-spoke
https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/hub-spoke
https://docs.microsoft.com/azure/architecture/patterns/

Getting to know architectural duties 11

What is challenging for application architects is to correctly understand the ecosystem in
which the application runs. Today, there is a clear trend that entails breaking the monolith.
In other words, we slice the architecture into multiple decoupled pieces, and we end up
with a very distributed architecture. In most modern applications, a lot of common duties
are offloaded to specialized services, often not so well known by old school application
architects. For instance, an API gateway already has built-in policies for API throttling,
token validation, and caching. Instead of writing your own plumbing in code to handle
this, it is better to offload it. Another attention point for application architects is the
horizontal scaling story of the cloud, meaning that applications/services must be multi-
instance aware, which is rarely the case with monoliths. We will explore these concerns
further in Chapter 5, Application Architecture.

Azure architects
From the top to the bottom of our enumeration, the IT landscape shrinks, from the
broadest to the narrowest scope. It would be very surprising to ever meet an Azure
enterprise architect. Similarly, it is unlikely that we will stumble upon an Azure domain
architect, since the parent domain would rather be the cloud (which is much broader than
just Azure).

However, it makes sense to have Azure-focused solution architects, technical architects,
and data architects, because they get closer to the actual implementation of a solution
or platform. Depending on your interest and background, you might specialize in one
or more service models, which are depicted in the following section. Thus, some Azure
architects will be interested in specialized maps, and some simply won't be interested,
although it is always highly recommended to look at the broader picture.

Architects versus engineers
Before we move on, we need to address the engineer that we all have inside of us! What
differentiates architects from engineers is probably the fact that most architects have
to deal with the non-functional requirements piece. In contrast, engineers, such as
developers and IT professionals, are focused on delivering and maintaining the features
and systems requested by the business, which makes them very close to the final solution.
Nevertheless, this book also contains some sections that are likely to help engineers build
effective solutions.

Now that we are clear with what the role of an architect is all about, it is time to get started
with the different service models and acquire the essential vocabulary that every Azure
architect should know.

12 Getting Started as an Azure Architect

Getting started with the essential cloud
vocabulary
In this section, we will cover the essential basic skills every Azure architect should have.
The cloud has different service models, which all serve different purposes. It is very
important to understand the advantages and inconveniences of each model, and to get
acquainted with the jargon relating to the cloud.

Cloud service models map
Figure 1.9 demonstrates our first map (not counting our sample map), which depicts the
different cloud service models and introduces some vocabulary. This map features two
additional dimensions (costs and ops) to each service model, as well as some typical use cases:

Figure 1.9 – Cloud service models

In terms of cost models, we see two big trends: consumption and pre-paid compute/
plans. The consumption billing model is based on the actual consumption of dynamically
allocated resources. Pre-paid plans guarantee a certain compute capacity that is
immediately made available to the cloud consumer. In terms of operations, the map
highlights what is done by the cloud provider, and what you still have to do yourself. For
instance, very low means that you have almost nothing to do yourself. We will now walk
through each service model.

Getting started with the essential cloud vocabulary 13

IaaS (Infrastructure as a Service)
IaaS is probably the least disruptive model. It is basically the process of renting a data
center from a cloud provider. It is business as usual (the most common scenario) in the
cloud. IaaS is not the service model of choice to accomplish a digital transformation, but
there are a number of scenarios that we can tackle with IaaS:

• The lift-and-shift of existing workloads to the cloud.

• IaaS is a good alternative for smaller companies that do not want to invest in their
own data center.

• In the context of a disaster recovery strategy, when adding a cloud-based data center
to your existing on-premises servers.

• When you are short on compute in your own data center(s).

• When launching a new geography (for which you do not already have a data
center), and to inherit the cloud provider's compatibility with local regulations.

• To speed up the time to market, providing some legacy practices and processes were
adjusted upfront to align with the cloud delivery model.

With regard to costs and operations, they are almost equivalent to on-premises, although
it is very hard to compare the total cost of ownership (TCO) of IaaS versus on-premises.

Of course, facilities, physical access to the data center, and more are all managed by
the cloud provider. It is no longer necessary to buy and manage the hardware and
infrastructure software by yourself. However, you should be aware that most companies
today have a hybrid strategy, which consists of keeping a certain number of assets
on-premises, while gradually expanding their cloud footprint. In this context, IaaS is a
required model to some extent, in order to bridge the on-premises and cloud worlds.

PaaS (Platform as a Service)
PaaS is a fully managed service model that helps you build new solutions (or refactor
existing ones) much faster. PaaS reuses off-the-shelves services that already come with
built-in functionalities and whose underlying infrastructure is fully outsourced to the
cloud provider. PaaS is quite disruptive with regard to legacy systems and practices.

14 Getting Started as an Azure Architect

Unlike IaaS, in order to make a successful cloud journey, PaaS requires a heavy
involvement from all the layers of the company and a top sponsor from the company's
leadership. Make no mistake: this is a journey. With PaaS, much of the infrastructure
and most operations are delegated to the cloud provider. The multi-tenant offerings are
cost-friendly, and you can easily leverage the economies of scale, providing you adopt the
PaaS model. PaaS is suitable for many scenarios:

• Green-field projects

• Internet-facing workloads

• The modernization of existing workloads

• API-driven architectures

• A mobile-first user experience

• An anytime-anywhere scenario, and on any device

The preceding list of use cases is not exhaustive, but it should give you an idea of what this
service model's value proposition is.

FaaS (Function as a Service)
FaaS is also known as serverless. It emerged rather recently; it started with stateless
functions that were executed on shared multi-tenant infrastructures. Nowadays, FaaS
expanded to much more than just functions, and it is the most elastic flavor of cloud
computing. While the infrastructure is also completely outsourced to the cloud provider,
the associated costs are calculated based on the actual resource consumption (unlike PaaS,
where the cloud consumer pre-pays a monthly fee based on a pricing tier). FaaS is ideal in
numerous scenarios:

• Event-driven architectures: Receive event notifications and trigger activities
accordingly. For example, having an Azure function being triggered by the arrival
of a blob on Azure Blob Storage, parsing it, and notifying other processes about the
current status of activities.

• Messaging: Azure Functions, Logic Apps, and even Event Grid can all be hooked to
Azure Service Bus, handle upcoming messages, and, in turn, push their outcomes
back to the bus.

• Batch jobs: You might trigger Azure Logic Apps or schedule Azure Functions to
perform some jobs.

• Asynchronous scenarios of all kinds

Getting started with the essential cloud vocabulary 15

• Unpredictable system resource growth: When you do not know in advance what
the usage of your application is, but you do not want to invest too much in the
underlying infrastructure, FaaS may help to absorb this sudden resource growth in a
costly fashion.

FaaS allows cloud consumers to focus on building their applications without having to
worry about system capacity, while still keeping an eye on costs. The price to pay for the
flexibility and elasticity of FaaS is usually a little performance overhead that is caused by
the dynamic allocation of system resources when needed, as well as less control over the
network perimeter. This leads to some headaches for an internal Security Operations
Center (SOC), which is the reason why FaaS cannot be used for everything.

CaaS (Containers as a Service)
CaaS is between PaaS and IaaS. Containerization has become mainstream, and cloud
providers could not miss that train. CaaS often involves more operations than PaaS. For
example, Azure Kubernetes Service (AKS) involves frequent upgrades of the Kubernetes
version on both the control plane and the worker nodes. Rebooting OS-patched worker
nodes remains the duty of the cloud consumer. We could say that AKS is a semi-managed
service as it is less managed than a PaaS or FaaS one, but it is much more managed than a
regular IaaS virtual machine.

On the other hand, Web App for Containers is a fully managed service that sits between
PaaS and CaaS, from a feature standpoint. Azure Container Instances (ACI) is also
fully managed and sits between serverless (the consumption-pricing model) and CaaS.
Admittedly, CaaS is probably the hardest model when it comes to evaluating both costs
and the level of operations. It is, nevertheless, suitable for the following scenarios:

• Lift-and-shift: During a transition to the cloud, a company might want to simply
lift and shift its assets, which means migrating them as containers. Most assets can
be packaged as containers without the need to refactor them entirely.

• Cloud-native workloads: By leveraging the latest cutting-edge and top-notch
Kubernetes features and add-ons.

• Batch, asynchronous, or compute-intensive tasks through ACIs.

• Portability: CaaS offers a greater portability, and helps to reduce the vendor lock-in
risk to some extent.

• Service meshes: Most microservice architectures rely on service meshes. We will
cover them in Chapter 3, Infrastructure Design.

16 Getting Started as an Azure Architect

• Modern deployment: CaaS uses modern deployment techniques, such as A/B
testing, canary releases, and blue-green deployment. These techniques prevent and
reduce downtime in general, through self-healing orchestrated containers.

We will explore the CaaS world in Chapter 2, Solution Architecture, and AKS in Chapter 3,
Infrastructure Design.

DBaaS (Database as a Service)
DBaaS is a fully managed service model that exposes storage capabilities. Data stores,
such as Azure SQL, Cosmos DB, and Storage Accounts, significantly reduce operations,
while offering strong high availability and disaster recovery options. Other services, such
as Databricks and Data Factory, do not strictly belong to the DBaaS category, but we will
combine them for the sake of simplicity. Until very recently, Azure DBaaS was mostly
based on pre-paid resource allocation, but Microsoft introduced the serverless model in
order to have more elastic databases. DBaaS brings the following benefits:

• A reduced number of operations, since backups are automatically taken by the
cloud provider

• Fast processing with Table Storage

• Potentially infinite scalability with Cosmos DB, providing that the proper
engineering practices were taken up front

• Cost optimization, when the pricing model is well chosen and fits the scenario

We will explore DBaaS in Chapter 6, Data Architecture.

XaaS or *aaS (Anything as a Service)
Other service models exist, such as IDaaS (Identity as a Service), to such an extent that the
acronym XaaS, or *aaS, was born around 2016, to designate all the possible service models.
It is important for an Azure architect to grasp these different models, as they serve different
purposes, require different skills, and directly impact the cloud journey of a company.

Important note
We do not cover Software as a Service (SaaS) in this book. SaaS is a fully
managed business suite of software that often relies on a cloud platform for
its underlying infrastructure. SaaS examples include Salesforce and Adobe
Creative Cloud, as well as Microsoft's own Office 365, Power BI, and Dynamics
365 (among others).

Introducing Azure architecture maps 17

Now that we reviewed the most important service models, let's dive a little more into the
rationale behind our maps.

Introducing Azure architecture maps
Although we have already presented a small map, let's explain how Azure architecture
maps were born and how to make sense of them. However rich the official Microsoft
documentation might be, most of it is textual and straight to the point, with walk-
throughs and some reference architectures. While this type of information is necessary,
it is quite hard to grasp the broader picture. An exception to this is the Azure Machine
Learning Algorithm Cheat Sheet (https://docs.microsoft.com/azure/
machine-learning/algorithm-cheat-sheet), which depicts, in a concise way,
the different algorithms and their associated use cases. Unfortunately, Microsoft did not
create cheat sheets for everything, nor is there any other real visual representation of
the impressive Azure service catalog and its ecosystem. That gap leaves room for some
creativity on the matter…and that is how Azure architecture maps were born. The
primary purpose of Azure architecture maps is to help architects find their way in Azure,
and to grasp, in the blink of an eye, the following:

• Available services and components: Since there are so many services and products
out there, our primary purpose is to classify them and associate them with the most
common customer concerns and use cases. However, keep in mind that Azure is
a moving target! We will try to be as comprehensive as possible, but we can never
guarantee exhaustive or complete coverage. It simply isn't possible.

• Possible solutions: These architecture maps are like a tree with multiple branches
and sub-branches, and finally the branches end with flourishing leaves. On many
occasions, there are multiple ways to tackle a single situation. That is why we will
map alternative use cases, based on real-world experiences. However, we strongly
encourage you to form your own opinion. You need to exercise your critical
reflection on every topic, as to not blindly apply the map recommendations. The
unique particularities of your own use case will often require a different solution (or
at least a modified solution).

• Sensitivity and trade-off points: Architecting a solution is sometimes about
choosing the lesser of two evils. Some of your choices or non-functional
requirements might affect your final solution, or they might lead you to face some
additional challenges. We will highlight sensitive trade-off points with specific
marks on the maps.

https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet
https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet

18 Getting Started as an Azure Architect

Given the size of the Azure service catalog, a single map would not suffice. Hence,
we created specialized maps. They are not restricted to Microsoft services and, when
applicable, may also refer to marketplace and third-party solutions. Let's jump to the next
section, which explains how to read and make sense of the maps.

How to read a map
The maps proposed in this book will be your Azure compass. It is therefore important to
understand the fundamentals of how to read them. We will therefore go through a sample
map to explain the semantics and its workings. Figure 1.10 presents a very tiny, sample map:

Figure 1.10 – A sample map

The central point that the diagram depicts is the Master Domain (MD), the central topic
of the map. Each branch represents a different area belonging to the MD. Under the sub
domains, you can find the different concerns. Directly underneath the concerns, the
different options (the tree's leaves) might help you address the concerns (see POSSIBLE
OPTION in Figure 1.10). There might be more than one option to address for a given
concern. For example, CONCERN 2 in the diagram offers two options: ALTERNATIVE 1
and ALTERNATIVE 2.

From time to time, dotted connections are established between concerns or options
that belong to different areas, which indicates a close relationship. In the preceding
example, we see that the ALTERNATIVE 2 option connects down to the SUB DOMAIN
2 concern. To give a concrete example of such a connection, we might find a Dapr leaf
under the microservice architecture concern that is connected (by a dotted line) to a Logic
Apps leaf under the integration concern. The rationale of this connection is because Dapr
has a wrapper for self-hosted Logic Apps workflows. Let's now see how, as an architect,
you can get started with your cloud journey.

Understanding the key factors of a successful cloud journey 19

Understanding the key factors of a successful
cloud journey
The role of the Azure architect is to help enterprises leverage the cloud to achieve their
goals. This implies that there is some preparation work up front, as there is no such thing
as a one-size-fits-all cloud strategy. As we have just seen, the various cloud service models
do not respond to the same needs and do not serve similar purposes. It is, therefore, very
important to first define a vision that reflects which business and/or IT goals are pursued
by your company before you start anything with the cloud.

As an example, typical transversal drivers (when moving to the cloud) are cost
optimization and a faster time to market. Cost optimization can be achieved by leveraging
the economies of scale from multi-tenant infrastructures. A faster time to market is
conceived by maximizing outsourcing from the cloud provider. Should you have these two
drivers in mind, rushing to a pure IaaS strategy would be an anti-pattern. Whatever your
drivers, a possible recipe of success is the following: Define Vision è Define Strategy è
Start Implementation. Let's now go through a few key aspects and start with the vision.

Defining the vision with the right stakeholders
Write a vision paper to identify what you are trying to solve with the cloud. Here are a few
example questions for problems you might want to solve:

• Do you have pain points on-premises?

• Do you want to make data monetization through APIs?

• Do you want to outsource?

• Is the hardware in your data center at its end of life?

• Are you about to launch new digital services to a B2C audience?

• Do you have several of these issues?

• Are your competitors faster than you to launch new services to consumers, making
you lose some market shares?

The vision paper helps you identify the business and IT drivers that serve as an input for
your strategy.

Business drivers should come from the company's board of directors (or other corporate
leaders). IT drivers should come from the IT leadership. Enterprise architecture may
play a role in identifying both the IT and business drivers. Once the vision is clear for
everyone, the main business and IT drivers should emerge and be the core of our strategy.

20 Getting Started as an Azure Architect

Defining the strategy with the right stakeholders
In order to achieve the vision, the strategy should be structured and organized around
the vision. To ensure that you do not deviate from the vision, the strategy should include
a cloud roadmap, cloud principles, and cloud governance. You should conduct a careful
selection of candidate assets (greenfield, brownfield, and so on). Keep in mind that this
will be a learning exercise too, so start small and grow over time, before you reach your
cruising speed.

You should conduct a serious financial capability analysis. Most of the time, the cloud
makes companies transition from CAPEX to OPEX, which is not always easy. You should
see the cloud as a new platform. Some transversal budgets must be made available, to
not be too tightly coupled to a single business project. Lastly, do not underestimate the
organizational changes, as well as the impact of company culture on the cloud journey.
Make sure that you integrate a change management practice as part of your strategy.

In terms of stakeholders, the extent to which the executive committee is involved should
depend on the balance between business drivers and pure IT drivers. In order to be
empowered to manage the different layers, the bare minimum requirement is to at least
leverage a strong business sponsor. You should also involve the Chief Information Officer,
or, even better, the Chief Digital Officer.

Starting implementation with the right stakeholders
This phase is the actual implementation of the strategy. Depending on the use case (such
as a group platform), the implementation often starts with a scaffolding exercise. This
consists of setting up the technical foundations (such as connectivity, identity, and so on).
It is often a good idea to have a separate sandbox environment, to let teams experiment
with the cloud. Do not default to your old habits, to using products you already use
on-premises. Do your homework and analyze Azure's built-in capabilities. Only fall back
to your usual tools after having assessed the cloud-native solutions. Stick to the strategy
and the principles that were defined up front.

In terms of stakeholders, make sure you involve your application, security, and
infrastructure architects (all together) from the start. Usually, the Azure journey starts
by synchronizing Active Directory with Azure Active Directory for Office 365, which
is performed by infrastructure teams. Since they start the cloud journey, infrastructure
teams often tend to work on their own, and look at the cloud with infrastructure eyes only,
without consulting the other stakeholders. Most of the time, this results in a clash between
the different teams, which creates a lot of rework. Make sure that all the parties using
the cloud are involved from the ground up, to avoid having a single perspective when
designing your cloud platform.

Understanding the key factors of a successful cloud journey 21

The preceding advice is useful when building a cloud platform for a company. However,
these factors are also often important to know for third-party suppliers, who would be
engaged on a smaller Request for Proposal (RFP). To deliver their solution, they might
have to adhere to the broader platform design, and the sooner they know, the better.

Practical scenario
As stated in the previous sections, crafting a few principles that are signed off by the top
management may represent a solid architecture artifact when engaging with various
stakeholders in the company. Let's now go through a business scenario for which we will
try to create an embryonic strategy:

Contoso is currently not using the cloud. They have all their assets hosted on-premises and
these are managed in a traditional-IT way. The overall quality of their system is fine, but
their consumer market (B2C) has drastically changed over the past 5 years. They used to
be one of the market leaders, but competitors are now showing up and are acquiring a
substantial market share year after year. Contoso's competitors are digital natives and do not
have to deal with legacy systems and practices, which enables them to launch new products
faster than Contoso, responding faster to consumer needs. Young households mostly use
mobile channels and modern digital platforms, which is lacking in the Contoso offering.
On top of this, Contoso would like to leverage artificial intelligence as a way to anticipate
consumer behavior and develop tailor-made services that propose a unique customer
experience by providing digital personal assistants to end users. However, while the business
has some serious ambitions, IT is not able to deliver in a timely fashion. The business asked
the IT department to conduct both an internal and external audit so as to understand the
pain points and where they can improve.

Some facts emerging from the reports include (but are not limited to) the following:

• The adoption of modern technologies is very slow within Contoso.

• Infrastructure management relies entirely on the ITIL framework, but the existing
processes and SLAs have not been reviewed for the past 5 years. They are no longer
in line with the new requirements.

• The TCO is rather high at Contoso. The operational team headcount grows
exponentially, while some highly qualified engineers leave the company to work in
more modern environments.

• Some historical tools and platforms used by Contoso have reached end of life and
are discontinued by vendors in favor of their corresponding cloud counterpart,
which made Contoso opt for different on-premises solutions, leading to integration
challenges with the existing landscape.

22 Getting Started as an Azure Architect

As a potential solution, the auditors proposed a magical recipe: the cloud (Azure in our
case)! Now, it's up to you, the Azure architect, to manage expectations and advise Contoso
on the next steps. We will see an example of this work in the next sections.

The drivers
Some drivers emerge rather quickly out of this business scenario. The business wants to
launch products faster, so time to market is critical. Costs are never mentioned by the
business, but the audit reveals a TCO increase due to growing operational teams. So,
costs are not a strong focus, but we should keep an eye on it. The features the business
want to expose as part of their services rely on top-notch technologies, which are hard
to make available on-premises. So, technology could be a business enabler for Contoso.
In summary, the drivers that emerge are time to market, new capabilities (enabled by
top-notch technologies), and, to a lesser extent, cost optimization.

Strategy
We could write an entire book on how to conduct a proper strategy, so we will simplify
the exercise and give you some keys to get started with your strategy. To understand all
the aspects that you have to keep an eye on, you can look at the Microsoft Cloud Adoption
Framework (https://docs.microsoft.com/azure/cloud-adoption-
framework/). This is a very good source of information, since it depicts all the aspects
to consider when building an Azure cloud platform. To structure and formalize your
strategy, you could also leverage governance frameworks such as Control Objectives
for Information and Related Technologies (COBIT) (https://www.isaca.org/
resources/cobit). This helps transform verbal intentions into a well-documented
strategy, and to consolidate the different aspects so as to present them in front of executive
people. It also connects the dots between the business goals and the IT goals in a tangible
fashion. One of the key COBIT artifacts is what they call the seven enablers, which are
applicable to any governance/strategy plan:

Figure 1.11 – Cobit's seven enablers

https://docs.microsoft.com/azure/cloud-adoption-framework/
https://docs.microsoft.com/azure/cloud-adoption-framework/
https://www.isaca.org/resources/cobit
https://www.isaca.org/resources/cobit

Understanding the key factors of a successful cloud journey 23

The diagram offers a short definition of each, and their relative impact on the journey.
You can easily map them to the dimensions you see in the CAF:

1. Principles, Policies, and Frameworks: This could be summarized as such: what
is clearly thought is clearly expressed. You should identify your core principles and
policies that are in line with the business drivers. These will be later shared and
reused by all involved parties. Writing a mission statement is also something that
may help everyone to understand the big picture.

2. Processes: The actual means to executing policies and transforming the principles
into tangible outcomes.

3. Organizational Structures: A key enabler to putting the organization in motion
toward the business and IT goals. This is where management and sponsorship play
an important role. Defining a team (or virtual cloud team), a stakeholder map, and,
first and foremost, a platform owner, accountable for everything that happens in the
cloud, who can steer activities.

4. Culture, Ethics, and Behavior: This is the DNA of the company. Is it a risk-adverse
company? Are they early adopters? The mindset of people working in the company
has a serious impact on the journey. Sometimes, the DNA is even inherited from
the industry (banking, military, and so on) that the company operates in. With a bit
of experience, it is easy to anticipate most of the obstacles you will be facing just by
knowing the industry practices.

5. Information: This enabler leverages information practices as a way to spread new
practices in a more efficient way.

6. Services, Infrastructure, and Applications: Designing and defining services is not
an easy thing. It is important to re-think your processes and services to be more
cloud-native, and not just lift and shift them as is.

7. People, Skills, and Competencies: Skills are always a problem when you start
a cloud journey. You might rely on different sourcing strategies: in-staffing,
outsourcing, …, but overall, you should always try to answer the question everyone is
asking themselves: what's in it for me in that cloud journey? In large organizations, a
real change management program is required to accompany people on that journey.

Developing a strategy around all these enablers is beyond the scope of this book. From
our real-world experience, we can say that you should work on all of them, and you
should not underestimate the organizational impacts and the cultural aspects, as they can
be key enablers or disablers should you neglect them. A cloud journey is not only about
technology; that's probably even the easiest aspect.

24 Getting Started as an Azure Architect

To develop our strategy a little further, let's start with some principles that should help
meet the business drivers expressed by Contoso, for whom time to market is the most
important one:

• SaaS over FaaS over PaaS over CaaS over IaaS: In a nutshell, this principle means
that we should buy instead of building first, since it is usually faster to buy than
build. If we build, we should start from the most provider-managed service model
to the most self-managed flavor. Here again, the idea is to gain time by delegating
most of the infrastructure and operational burden to the provider, which does not
mean that there is nothing left to do as a cloud consumer. This should help address
both the time-to-market driver, as well as the exponential growth of the operational
teams. From left to right, the service models are also ordered from the most to the
least cloud-native. CaaS is an exception to this, but the level of operational work
remains quite important, which could play against our main driver here.

• Best of suite versus best of breed: This principle aims at forcing people to first
check what is native to the platform before bringing their own solutions. Bringing
on-premises solutions to the cloud inevitably impacts time. Best of suite ensures a
higher compatibility and integration with the rest of the ecosystem. Following this
principle will surely lock you in more to the cloud provider, but leveraging built-in
solutions is more cost- and time-efficient.

• Aim at multi-cloud but start with one: In the longer run, aim at multi-cloud to
avoid vendor locking. However, start with one cloud. The journey will already
be difficult, so it's important to concentrate the efforts and stay focused on the
objectives. In the short term, try to make smart choices that do not impact cost and
time: do not miss low hanging fruit.

• Design with security in mind: This principle should always be applied, even
on-premises, but the cloud makes it a primary concern. With this principle, you
should make sure to involve all the security stakeholders from the start, so as to
avoid any unpleasant surprises.

• Leverage automation: Launching faster means having an efficient CI/CD toolchain.
The cloud offers unique infrastructure-as-code capabilities that help deploy faster.

• Multi-tenant over privatization: While privatization might give you more control,
it also means a risk of reintroducing your on-premises practices to the cloud. Given
the audit reports we had, we see that this might not be a good idea. Leveraging
multi-tenant PaaS services that have been designed for millions of organizations
worldwide is a better response to the business drivers.

This is not necessarily where the list ends. Other principles could be created.

Summary 25

Having different drivers would give us different principles. The most important thing
is to have concise, self-explicit, and straightforward principles. Now that you have this
first piece done, you can build on it to further develop your policies and the rest of your
strategy. This will not be covered in this book, but you had a glimpse of what a cloud
strategy looks like. So, do work on this in your own time. The time has now come to recap
this chapter.

Summary
In this chapter, we reviewed the architecture landscape and the different types of architects
we may be working with in our day-to-day Azure architecture practice. Knowing the
different profiles, being able to speak to each of them, as well as satisfying their own
interests and preoccupations, is what every Azure architect should do.

In this chapter, we also explained the value proposal of the maps and how to read a map,
which will be very useful for the next chapters. We shed some light on the various service
models that exist in the cloud, and those that serve different purposes. We also tried to grasp
the important differences that exist across them, in terms of functionalities, operations, and
costs. All these models constitute the cornerstone of Azure, and should be wholly mastered
by the Azure architect as they represent the minimal, vital must-have skills. Finally, we have
understood the key success factors of a cloud journey from real-world observations and
through a fictitious enterprise scenario.

In the next chapter, we will start to get closer to the actual implementation of an
Azure-based solution.

2
Solution

Architecture
In this chapter, we will review the broad landscape of Azure, looking at it through the eyes
of a solution architect. More specifically, we will cover the following topics:

• The solution architecture map

• Zooming in on the different workload types

• Zooming in on containerization

• Solution architecture use case

This chapter should give you the keys to designing any type of solution with Azure. After
reading this chapter, you should be able to find a workable solution, whatever use case
you are confronted with. However, you still need to refer to the other maps of this book
in order to dig deeper into additional in-depth information.

28 Solution Architecture

Technical requirements
Admittedly, pure architecture is not typically hands-on. However, by the end of the
chapter, we will have walked you through the design of a reference architecture and its
corresponding code implementation. To open the physical reference architecture file and
test the code, you will need the following:

• Visual Studio 2019 to run and debug the provided .NET Core program locally. It
makes use of a local Azure Storage emulator and the Azure Functions runtime.

• Fiddler, Postman, or any HTTP tool you want, to send HTTP requests to
our program.

• Microsoft Visio to open the diagrams. We also provide the corresponding
PNG files.

The full code files are available at https://github.com/PacktPublishing/
The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/
Chapter02.

The CiA videos for this book can be viewed at: http://bit.ly/3pp9vIH

The solution architecture map
The purpose of the solution architecture map is to help solution architects find their
way in Azure. We defined the duties of a solution architect in the previous chapter,
which is typically an architect who assembles the different building blocks and services of
a solution while considering the non-functional requirements. Solution architects engage
with their specialized peers, who are often application, infrastructure, and
security architects.

This solution architecture map, illustrated in Figure 2.1, does not alone regroup all the
Azure services, nor does it cover all the possible use cases, but it can be used as a source of
inspiration. Depending on the extent to which you want to practice solution architecture,
we suggest that you carefully read every chapter of this book, to be able to consider the
end-to-end aspects of a solution:

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter02
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter02
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter02
http://bit.ly/3pp9vIH

The solution architecture map 29

Figure 2.1 – The solution architecture map

Important note
To see the full solution architecture map (Figure 2.1), you can
download the PDF file that is available here: https://github.
com/PacktPublishing/The-Azure-Cloud-Native-
Architecture-Mapbook/blob/master/Chapter02/maps/
Azure%20Solution%20Architect%20Map.pdf. You can use the
zoom-in and zoom-out features to get a better view.

In Figure 2.1, the Azure Solution Architect Map starburst acts as the hub of a wheel.
There are eight spokes of the wheel:

• MONITORING

• WORKLOAD TYPES

• GOVERNANCE / COMPLIANCE

• CONTAINERIZATION

• IDENTITY

• CI/CD

• SECURITY

• CONNECTIVITY

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter02/maps/Azure%20Solution%20Architect%20Map.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter02/maps/Azure%20Solution%20Architect%20Map.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter02/maps/Azure%20Solution%20Architect%20Map.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter02/maps/Azure%20Solution%20Architect%20Map.pdf

30 Solution Architecture

Later in this chapter, we will zoom in on the different spokes (areas) of the solution
architecture map, but first, we're going to focus on the different workload types that span
across this architecture.

Zooming in on the different workload types
In the following sections, we will take a closer look at some typical use cases and cross-
cutting concerns that solution architects deal with (we refer to these workload types
as categories). Separating the map into smaller sections makes it easier to digest and
understand. Let's begin by looking at Systems of Engagement (SoE).

Understanding systems of engagement
This category regroups all the services that belong to the frontend layer, such as user
interfaces, mobile apps, and every channel that helps engage with first and third parties:

Figure 2.2 – The SoE category

In Figure 2.2, the SoE category map includes four top-level groups:

• REAL-TIME WEB

• MOBILE

• UI

• MISCELLANEOUS

Zooming in on the different workload types 31

The miscellaneous group includes CDN and Media Services. Azure Content Delivery
Network (CDN) helps you reduce your load times for more responsive customer
interactions. If you are working with rich media and video streaming, Azure Media
Services should be your primary choice.

The next group in Figure 2.2 is UI. First, let's discuss the sub-group of chatbots. Chatbots
have become popular because of their user-friendliness. Azure has a lot to offer in that
area. Azure Bot Service integrates with many channels (Alexa, Cortana, Direct Line,
Facebook, Microsoft Teams, Slack, and so on) to increase the reach of your chatbots.
QnA Maker and LUIS (Language Understanding Intelligent Service) help drive
conversations, and Azure Cognitive Services facilitates richer interactions through audio
and visual features (QnA Maker and LUIS are features in Cognitive Services). In our
chatbots list (in Figure 2.2), we specifically call out the Cognitive Services APIs: Custom
Vision, which tags images and extracts text from them, and Custom Speech, which can
turn speech into text (such as voice commands for your app).

Under the UI group (in the map of our SoE category), we also have static websites, Azure
App Service, and the API sub-group. STATIC WEBSITES points to AZURE BLOB
STORAGE, which is a storage type where you can place all kinds of files (in this case, you
would have built your website using HTML and other files, and you upload your files into
Blob storage). It's called static because you're not dynamically changing your website with
Azure (you'd have to go in and replace the files).

Next, Azure App Service is a fully managed, first-class citizen for hosting frontend
applications, Backends for Frontends (BFF), and backend services in general. It supports
a wide set of programming languages (at the time of writing, this includes .NET, .NET
Core, Java, Node.js, PHP, Python, and Ruby), and it is available over multiple pricing tiers,
which range from multi-tenant to isolated. App Service can easily be integrated with a
deployment factory for Continuous Integration and Continuous Deployment (CI/CD)
purposes, and it allows zero-downtime through the use of deployment slots. It is also ideal
for the following scenarios:

• MVC web applications

• API services

• Lift and shift of legacy .NET applications, by using Web App for Containers with
Windows

• Pre-container-orchestration scenarios, by using Web App for Containers with Linux
or Windows

32 Solution Architecture

App Service can also be used with pure Single-Page Applications (SPAs). However, the
current trend is to offload all the static files (such as .js, .css, .png, and so on) to a
storage account that is proxied by Azure CDN or Azure Front Door for optimized speed.
App Service relies on App Service plans, which define the compute that is allocated to the
service(s). A plan may host one or more services and support both horizontal and vertical
(auto)scaling, either for the entire set of apps or through a per-app horizontal scaling
feature.

That brings us to the API sub-group (under UI). When used as a BFF, App Service should
be proxied by an API gateway, in order to enhance the overall security for the instance, by
validating the JWTs (JSON Web Tokens) or client certificates, as well as to offload typical
API concerns, such as throttling, caching, and so on. App Service is mature, robust, and
easy to use, with minimal operations. Of course, Azure App Service is not the only option
to host a BFF. A BFF can also be hosted in Azure Kubernetes Service (AKS) or Service
Fabric Mesh. The final service in the API sub-group is Azure Functions, which are small
blocks of code that respond to messages, requests, or schedules (such as backing up or
archiving customer data), or can be part of a broader microservices architecture.

Next, let's move on to the MOBILE top-level group (in our SoE category in Figure 2.2).
Regarding mobile scenarios, we can still leverage Azure App Service as a BFF and Azure
Notification Hubs in order to send push notifications to both mobile and non-mobile
apps whenever we see fit. Microsoft App Center (also called the Visual Studio App
Center) is handy to deploy and test mobile apps. It used to have a push notification
feature, but this was retired in December 2020.

The final top-level group is REAL-TIME WEB. End users often request the ability to be
notified when a task completes, or to watch changes in near real time as tasks occur. A
common example of this is a chat application. This can be achieved with Azure SignalR
Service, which offloads the SignalR backend to Azure, instead of requiring you to host
your own SignalR server.

Understanding systems of record
Strictly speaking, Systems of Record (SoR) refers to databases and data integrity. An SoR
might (or might not) be transactional or mission-critical:

Zooming in on the different workload types 33

Figure 2.3 – The SoR category

For our SoR category map (Figure 2.3), we have just three top-level groups:

• ANYTHING

• RELATIONAL

• NOSQL

From the ANYTHING group, we'll unfold Azure Synapse Analytics (formerly known as
Azure Synapse) more later in this chapter, but this is where you can get big data analytics
against large enterprise data warehousing.

That brings us to the next two groups. We can distinguish between these two main storage
types: the RELATIONAL and NOSQL data stores. The rationale of using a NoSQL engine
versus a SQL one is beyond the scope of this book but we can try to summarize the main
reasons that lead you to choose either of these. NoSQL systems are designed to scale, and
mostly rely on the BASE (Basically Available, Soft State, Eventual Consistency) model,
whose biggest impact is eventual consistency. Their purpose is to respond fast to read
requests, at the cost of data accuracy. They are suitable for big data. Some variants of
NoSQL implementations, such as Azure Table storage, also embrace strong consistency,
but will not scale as much as an eventual consistency-based Cosmos DB. Traditional SQL
engines rely on the ACID (Atomicity, Consistency, Isolation, Durability) model, which is
centered around transactions and data accuracy, at the cost of speed. They are nothing new,
since we have used them for decades, but it is worth mentioning that Azure SQL Database
ships with two compute models: DTU and vCore. The DTU model is a combination of
CPU and memory resources that are allocated to a single database or an elastic pool. This
compute model aims at simplifying cost calculations, but it is rather obscure compared to
vCore. The latter is more transparent, since you see exactly what is charged for the CPU
and memory. You can scale that differently, while DTU regroups everything together.

34 Solution Architecture

A way to optimize database resources is to use SQL Database elastic pools, which
allocate resources dynamically, based on the actual needs of the databases. Whenever
you deal with sporadic resource-intensive workloads, you should consider the Azure
SQL serverless compute tier. (It automatically scales compute, based on the workload
demand, and it bills for the amount of compute that's used, per second.) However, this is
only valuable when dealing with databases that have important idle times. The reason is
that the allocated compute is only deallocated after an hour of inactivity, which could then
lead to higher costs if the database never idles for more than an hour. Therefore (this is
inspired by a true story), you should avoid running availability/advanced tests that end up
making a call to such a database.

Finally, we arrive at the NoSQL group (in Figure 2.3). Cosmos DB is Azure's best NoSQL
storage solution. It currently (as of the time that this book was written) supports five API
models: SQL, Mongo, Table, Cassandra, and Gremlin. The native MongoDB API is only
available by relying on Atlas, a marketplace product, or by self-hosting a MongoDB, which
in this case is often combined with AKS. Cosmos DB's preferred API model is SQL, as it
offers the best performance, so you should try to favor this option first. Going for another
model might be driven by a constraint such as making a lift and shift of an existing
MongoDB to Cosmos, or simply a technology preference.

Other types of data stores (such as Blob storage, Redis cache, and services for data in
transit) do not exactly correspond to the SoR definition. However, be aware that there are
many more services that can store data in one way or another. We will cover them later on
in this book.

Understanding systems of insight
This category regroups data analysis services, helping to extract valuable business insights
out of both SoR and SoE, but it also does so from any type of data store:

Figure 2.4 – The SoI category

Zooming in on the different workload types 35

In our Systems of Insight (SoI) category map (Figure 2.4), we have the following
top-level groups:

• ANALYTICS

• ETL

Each top-level group is divided into subgroups that we are going to explain as follows.

Let's start at the top and look at the AI sub-group. For predefined AI services, you can
rely on Azure Cognitive Services, a set of APIs that help when dealing with Optical
Character Recognition (OCR), image tags, Natural Language Processing (NLP), and so
on. Some of these APIs are mainstream and non-customizable, while others, such as LUIS
and the Custom Vision service, can be easily trained to build models that are tailor-made
to meet your needs. Cognitive Search enables you to leverage the built-in AI capabilities to
identify relevant content at scale.

Machine Learning Studio (the web portal for Azure Machine Learning) comes with
typical algorithms for which Microsoft has built the machine learning cheat sheet
(https://docs.microsoft.com/azure/machine-learning/algorithm-
cheat-sheet), which we mentioned in Chapter 1, Getting Started as an Azure Architect.

Machine Learning Studio is a fully managed service. It has some very nice features that
allow you to test multiple models in parallel against the same set of training data, as well
as to evaluate them all together in order to see which one performs the best. Contrarily,
deep learning virtual machines are self-managed, but they are preconfigured with all the
popular AI frameworks. Azure Data Explorer and Azure's native query language for many
services is the Kusto Query Language (KQL), which is mostly used in monitoring and
log analysis.

Now, let's move down to our COMPUTED sub-group (from our SoI category map, in
Figure 2.4). Azure Synapse Analytics is Azure Data Warehouse's successor, but this is
more than just a rebranding! Azure Synapse glues many data services together (Azure
Data Warehouse, Data Lake, Power BI, Spark clusters, Azure Machine Learning, and
so on) in order to analyze both enterprise and big data. It is intended to be used by
both data scientists and traditional Business Intelligence (BI) analysts in a single
consolidated service.

https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet
https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet

36 Solution Architecture

Power BI is a comprehensive service that allows you to create reports and dashboards
(including real-time dashboarding) at an enterprise scale. Power BI's real-time dashboards
can be very handy in any Business Activity Monitoring (BAM) scenario. Azure Data
Lake Analytics processes big data jobs (petabytes of data) in seconds, and Azure
HDInsight is an easy and cost-effective method for running open source analytics, such
as Apache Hadoop, Spark, and Kafka.

Azure Databricks is a very comprehensive service that you can use to analyze data at
scale. It relies on a cluster and can be fed by any data source. It encompasses Artificial
Intelligence (AI) by leveraging data science frameworks. Databricks requires very
specific skills, although the SQL language is accessible to non-data scientists. Azure Data
Explorer helps non-data scientists extract useful insights by using KQL.

In our HYBRID sub-group, we find the data gateway, which acts as a bridge between
the cloud and on-premises data sources. The gateway comes in two flavors: personal and
shared. The personal gateway allows users to create Power BI reports against on-premises
data, for their own use. The shared gateway is a cross-user and cross-service gateway.

Stream Analytics is a serverless service for real-time analytics. It is often used in
conjunction with Power BI real-time dashboards for BAM and IoT scenarios. It also helps
make decisions on data as it flows into your system. We will zoom in deeper on the data
services in Chapter 6, Data Architecture.

Finally, in the ETL (or ELT) sub-group (at the bottom of Figure 2.4), Azure Data Factory
is another fully managed service that can be used for both ETL and ELT purposes. It can
be combined with Databricks notebooks and Azure Functions. Pipelines can be triggered
through API calls, and they can react to Azure Event Grid notifications.

Understanding systems of interaction (IPaaS)
Systems of interaction represent the way to integrate SoE with SoR, as well as to integrate
with other systems. In Azure, we can refer to this as Integration Platform as a Service
(IPaaS). This category regroups services that enable integration between different layers of
a single solution or across multiple solutions. As usual, Figure 2.5 is available as PNG and
VSDX files in our GitHub repo:

Zooming in on the different workload types 37

Figure 2.5 – The IPaaS category

In the systems of interaction (IPaaS) category map (Figure 2.5), we have three
top-level groups:

• API

• PUB/SUB

• ORCHESTRATION WORKFLOWS

38 Solution Architecture

In the API top-level group, we can use Azure Functions, which has many built-in
bindings that interact with many different stores. Azure Functions ships on the
consumption tier (serverless) and pre-paid tiers through an Azure App Service plan.
It can also be self-hosted using containers, in which case you should look at Kubernetes
Event-Driven Autoscaler (KEDA) to handle the scaling aspects. You might wonder why
you would self-host functions, instead of letting Microsoft do so. Figure 2.6 is another
focused map that will help you understand some important differences:

Figure 2.6 – KEDA versus the consumption tier of Azure functions

The typical reason is private connectivity. Whenever you want fully private connectivity,
for both your function endpoints and the stores they talk to, self-hosting functions are
often required. There is an alternative that consists of using the premium tier of Azure
Functions, but this is rather expensive, and it does not yet offer the same level of network
isolation. KEDA brings the intelligence of Azure Functions to AKS, by playing the man in
the middle between the event stores and the handlers. KEDA also integrates with many
more stores, including non-Microsoft cloud platforms, such as AWS, Alibaba, and so
on. That is one of the low-hanging fruits we discussed in Chapter 1, Getting Started as an
Azure Architect, where we advised you to make smart choices to avoid vendor-locking
while not starting multiple clouds at once.

Zooming in on the different workload types 39

Beyond Azure Functions, you can also rely on Azure Container Instances (ACI), Azure
Automation runbooks, and basically any API through webhook integration.

Nowadays, integration is made through APIs. Azure API Management (APIM) is
Azure's first-class citizen for exposing APIs to other systems and organizations. It allows
you to manage your APIs through many features. The following list highlights the main
APIM features:

• Versioning: Dealing with multiple versions of the same API, for backward
compatibility.

• Revisions: Testing API changes, with the ability to promote them later on, as the
real/deployed versions.

• Products: Clubbing APIs together into a product, and then letting API consumers
subscribe to the product.

• Policies: Enforcing controls, such as JWT token validation, throttling, HTTP
header check, request/response transformations, and so on. Policies are enforced by
the API gateway, which is also known as the Policy Enforcement Point (PEP). API
gateways can also be self-hosted, mostly in hybrid scenarios (on-premises, cloud, or
cloud-to-cloud).

• Developer portal: Letting consumers discover and subscribe to your APIs.

• Publisher portal: Managing your APIs.

The preceding list is not exhaustive, but the key thing to remember is that all API
management systems (not only Azure's APIM) play an important role when integrating
different systems together. APIM is mostly used in Business-to-Business (B2B) contexts,
when selling APIs to other parties, but it's also used in microservices architectures. Logic
Apps can be used to consume APIs that are made available by APIM.

40 Solution Architecture

Azure has native services to deal with all types of integration. In the publish/subscribe
domain (see the PUB/SUB top-level group in Figure 2.5), two services emerge: Azure
Service Bus and Azure Event Grid. Service Bus is mostly used in messaging scenarios,
while Event Grid is suitable in Event-Driven Architectures (EDAs). The boundaries
between messaging and EDA are sometimes blurred, because an event itself is a message.
An event is generally used to tell others that something happened, while a message
instructs others to act on it. Figure 2.7 depicts Azure's EDA landscape (as usual, you can
find the JPG and VSDX files for the EDA map in our GitHub repo):

Figure 2.7 – A map focused on EDA and messaging architectures

We see that Event Grid is more suited for discrete events, which are independent events
that reflect a state change. Event Grid can be used to notify receiving parties. In contrast,
Azure Event Hubs is ideal for a large sequence of correlated events, such as for logging
metrics of API calls, further analysis, and fine-grained billing.

Azure Queue Storage is mostly used for point-to-point message exchange and the queue-
based load leveling pattern, which is also possible with Service Bus queues. In such a
situation, where you simply need a mere queue, instead of a complete pub/sub, you might
look at the pricing to make your choice.

Zooming in on the different workload types 41

Finally, let's dig into the third top-level group of our IPaaS map, orchestration workflows
(see the bottom of Figure 2.5).

For these workflow-like workloads, Azure Durable Functions and Logic Apps are
the main services you would use. The main difference between them is related to
integration connectors that ship with Logic Apps. Later in this chapter, you will find
Figure 2.20 that highlights the differences between them, but we can already say that
Logic Apps is Azure's star product for any integration scenario. Let's now address some
typical cross-cutting concerns.

Looking at cross-cutting concerns and non-functional
requirements
Building a solution is not only about programming. You may have the best developers
ever, producing the best code, and you still might end up with a very poor customer
experience. Beyond the workload classification itself, you need to look at the cross-cutting
concerns and non-functional requirements, which all contribute to a production-grade
application.

But what exactly is a production-grade application? It can be defined as an application that
meets the following qualifications:

• Performs well

• Is reliable and secure

• Can be deployed easily and frequently

• Is hosted on a resilient system

• Is hosted in a governed system, a landing zone for your cloud solutions

• Is properly monitored

• Has a clear service model defined, such as detailing who does what when a
problem occurs

Most of the previous items only partially depend on the code. This is why we shed some
light on these transversal concerns in the next sections. The following sections are the
zoom-in maps, which show us detailed views of the spokes of this chapter's solution
architecture map (Figure 2.1).

42 Solution Architecture

Learning about monitoring

Monitoring is mandatory for any system that runs in production. The purpose of
monitoring systems and applications is to detect adverse events as soon as possible,
and then to react either manually or automatically. Monitoring also makes it possible
to have global oversight of the running systems. You can then collect Key Performance
Indicators (KPIs) to evaluate the service quality toward your proposed Service-Level
Agreements (SLAs). See Figure 2.8 to zoom in on the monitoring category:

Figure 2.8 – Zoom in on monitoring

In Figure 2.8, we have three top-level groups: TRADITIONAL IT, NATIVE, and DSC.
Let's discuss the traditional IT group. Azure's native monitoring tools are quite robust, but
you're sometimes required to integrate your system with products that are typically used
for on-premises systems, such as Splunk. The good news is that most of these products
ship with built-in Azure connectors.

The same thing applies to IBM QRadar for security logs. Depending on the situation,
it's a viable option to use Azure-only monitoring. Likewise, SCOM CONNECTOR
(in the traditional IT group) refers to an Azure connector that enables you to connect
to Microsoft System Center Operations Manager (SCOM). In any case, we would
recommend that you leverage native services as much as possible, even when on-premises
integration is required. The options are not mutually exclusive, although log ingestion
comes at a cost.

Zooming in on the different workload types 43

Now, let's go to the NATIVE top-level group. Azure Monitor is the main service that
collects all the metrics, while Log Analytics (an Azure Monitor feature) is usually used as
a central log repository to query logs through KQL. You can define alerts on both metrics
and logs. Alerts are sent through action groups, which range from sending emails and
SMS to triggering automated responses via Logic Apps, which integrates with virtually
anything. Azure Network Watcher is a set of tools for you to diagnose and enable/disable
resource logs in an Azure virtual network. Application Insights is a feature of Azure
Monitor, which works as a performance management service for developers. Azure
dashboards are useful to quickly view a visual representation of a solution's health. A good
practice is to leverage Infrastructure as Code (IaC) with pre-defined dashboards for
every deployed application.

Lastly, in our DSC group (see Figure 2.8), Azure Automation is the only native Azure
service that ensures a Desired State Configuration (DSC), which targets virtual
machines. DSC consists of defining a certain configuration and getting the service to
auto-correct deviations. Azure Automation meets similar needs as Ansible, Chef, Puppet,
and so on. Azure Automation can also be used to provision Azure Resources through
Automation runbooks, either directly or from CI/CD pipelines through webhooks. Its
hybrid workers also make it easy to interact with on-premises systems.

From the very beginning, an Azure solution architect should envision a monitoring
strategy that is scoped to either a single solution or that is scoped to integrate with a
strategy that is defined for the entire platform. This will impact deadlines if a monitoring
strategy is not considered from the start. If a requirement from the landing zone is to
redirect logs to Azure Event Hubs, then in order to let Splunk ingest them on-premises,
you, the Azure solution architect, must supervise the activities accordingly, and reflect this
in an initial set of solution diagrams.

44 Solution Architecture

Learning about factories (CI/CD)
In theory, CI/CD has become mainstream. However, we often see big gaps and a lack
of understanding in that matter. Since leveraging CI/CD to its maximum extent has
an impact on how applications are built and deployed, it is important for the solution
architect to assess the level of readiness of the existing CI/CD factory (if any). Figure 2.9
zooms in on CI/CD spoke/area of our solution architecture map:

Figure 2.9 – Zoom in on CI/CD

Our CI/CD zoom-in map includes four elements:

• ACR TASKS & WEBHOOKS

• GITHUB ACTIONS

• AZURE AUTOMATION WEBHOOKS

• AZURE DEVOPS

We'll start with the first element on the left, ACR TASKS & WEBHOOKS (in Figure 2.9).
When dealing with containers, Azure Container Registry (ACR) has some built-in
triggers (webhooks) that react to source code changes and base image updates, which
facilitates container-based application deployments.

Our second element is GITHUB ACTIONS. A current trend in the DevOps space is to
abandon Azure DevOps (ADO) in favor of GitHub, a globally well-known platform
(also owned by Microsoft). At this stage, ADO is more in line with typical enterprise
requirements (such as auditing, security granularity, and so on), but GitHub rapidly fills
the gaps in that area. GitHub also has an enterprise version in two flavors: Enterprise
Server and Enterprise Cloud. GitHub Actions automates your workflows, including CI/
CD, build, test, and deployment. Given the features that GitHub provides, the GitHub
option should be preferred over others for companies building their CI/CD platform
from scratch. Nevertheless, you should rest assured that ADO will still be around for
a long time.

Zooming in on the different workload types 45

Our third element, AZURE AUTOMATION WEBHOOKS, is a feature of Azure
Automation that allows an external service (such as ADO, GitHub, and so on) to start a
runbook (your automation task).

CI/CD means tooling. AZURE DEVOPS (our fourth node) is Azure's historically
preferred tool to provision Azure resources and deploy applications. It exists in multiple
flavors: Azure DevOps Services and Azure DevOps Server. Its ancestors were Team
Foundation Server (TFS) and Visual Studio Team Services (VSTS). A common belief
about ADO (certainly due to its name) is to think that it can only be used for Azure. This
is, of course, totally wrong! ADO can be used to target any system – on-premises, AWS,
and so on – but ADO has native tools to facilitate Azure deployments. ADO makes use
of Microsoft-hosted agents, as well as self-hosted agents, whenever private connectivity
is required.

We will explore the factory concerns more deeply in Chapter 4, Infrastructure Deployment,
when we explain IaC.

Learning about identity
In the cloud, identity is one of the most important layers, and it is often overlooked
or unknown (or not well-known) by solution and security architects. There is a huge
difference between on-premises identity systems and cloud-based identity systems, where
OpenID Connect and OAuth are dominant. Figure 2.10 zooms in on the identity category:

Figure 2.10 – Zoom in on identity

46 Solution Architecture

For the IDENTITY zoom-in map, we have four top-level groups:

• HYBRID

• B2E

• B2B

• B2C

In the HYBRID group, the AAD proxy gives you remote, secure access to your
on-premises apps.

Active directory and Azure Active Directory (AAD) do not have that much in common
when closely looking at them. AAD exposes many features for which similar concepts do
not even exist on-premises. Identity and Access Management (IAM) teams have a solid
learning curve in front of them. AAD is the cornerstone of Azure. Identity is one of the
key foundations that you must define before you host anything in Azure. It is an important
part of the Cloud Adoption Framework and a solid foundational asset. An Azure solution
architect must know the bare minimum of modern authentication machinery. AAD
addresses both infrastructure and application concerns.

That brings us to our second group in the identity zoom-in map. In a Business-
to-Enterprise (B2E) context, AAD is used to authenticate internal employees and
collaborators to systems and applications (this is also sometimes called business-to-
employee.) Azure AD Connect provides hybrid identity features, such as password hash
sync, pass-through authentication, synchronization between your on-premises directory
and AAD to let you leverage single sign-on, as well as health monitoring features. Azure
AD Passthrough is an alternative to Active Directory Federation Services (ADFS) that
allows you to validate user credentials against your on-premises directory, while not
having to plan for the full ADFS infrastructure. On top of it, Azure AD Passthrough can
seamlessly switch to AAD authentication, should the on-premises agent not be available.

Next is B2B, our third grouping from Figure 2.10. AAD can also be used in a B2B context
through B2B invites. That is typically how you can control who Office 365 users can invite
in a B2B collaboration context. The same applies to custom workloads.

Finally, we have our fourth/bottom group. In a B2C market with many public-facing apps
and APIs, Azure AD B2C is the preferred choice, since it optionally integrates with social
identity providers, and it proposes valuable B2C policies targeted to Lambda consumers.

Because identity is an important security pillar in the cloud, we will explore it further in
Chapter 7, Security Architecture.

Zooming in on the different workload types 47

Learning about security
Security is everywhere. Figure 2.11 is a high-level view of Azure's security landscape:

Figure 2.11 – Zoom in on security

We have three top-level groups for our SECURITY zoom-in map (Figure 2.11):

• POSTURE MANAGEMENT

• CASB

• PAM

Let's start with the posture management grouping. Azure Policy compares your resource
properties to its business rules, in order to evaluate how you're using your resources. For a
solution architect, it is important to know about transversal concerns, such as which SIEM
systems they have to integrate with, and that a service such as Azure Security Center
might help them detect security issues in pre-production environments (early enough in
the life cycle of their solution).

The Azure Security Kit (AzSK) is underlined on our map because it is no longer
futureproof. In the past, it used to compensate for what Security Center lacked, regarding
PaaS/Function as a service (FaaS) service coverage. Security Center was initially only
focused on IaaS components, such as virtual machines, while AzSK is mostly focused on
PaaS and FaaS. Now that Security Center also covers the main PaaS services, as well as
containers, it overshadows AzSK in that matter.

48 Solution Architecture

Azure Sentinel is Azure's integrated Security Information and Event Management
(SIEM). It was created by Microsoft to have a cloud-native, scalable, and integrated
SIEM. Azure Sentinel can integrate with various data sources, including non-Azure
ones. Advanced incident detection and response scenarios can be built through the use
of AI-enabled notebooks. At the time of writing, Azure Sentinel is not yet at the level of
its competitors and does not appear yet on Gartner's magic quadrant. However, Azure
Sentinel (like most cloud-native services) is quickly catching up.

We will explore more deeply all the security concerns in Chapter 7, Security Architecture.

Learning about connectivity
Like identity, connectivity is a very important pillar. While not necessarily knowing bits
and bytes about networking in Azure, solution architects should understand what role
it plays in the overall solution. Every asset might deal with public and private endpoints,
with different types of reverse proxies and firewalls. When it comes to hybrid workloads,
say, for instance, a frontend in the cloud talking to an on-premises backend, connectivity
becomes even more crucial. Cross-cutting concerns, such as performance and resilience,
are directly subject to the underlying connectivity plumbing. Figure 2.12 shows the most
important connectivity options at our disposal, in order to bridge Azure data centers to
on-premises ones, as well as to route and secure traffic:

Figure 2.12 – Zoom in on connectivity

Zooming in on the different workload types 49

For the connectivity zoom-in map, we have two top-level groups:

• DATA CENTER, which you have to understand as an on-premises data center

• NETWORKING/FIREWALLING

Let's start with DATA CENTER. Azure ExpressRoute guarantees a certain bandwidth,
a specific level of resilience, and a quality of service, but a mere VPN connection
does not. Solution architects should know what is already set up (if anything), in
order to evaluate whether (or not) the underlying network plumbing satisfies the
non-functional requirements. Azure ExpressRoute is the de facto connectivity choice
made by many organizations.

The second top-level group is networking/firewalling, which we will discuss further in
Chapter 3, Infrastructure Design, and Chapter 7, Security Architecture.

Since solution architects are the guardians of end-to-end architecture, they need to
explore the other maps in the book to have a better understanding of the big picture.

Learning about governance/compliance
Similarly, while not being directly in charge of the overall governance, solution architects
should understand how the landing zone is governed. This plays a key role in the service
model, and the level of SLA their solution may offer to customers (whether internal or
external customers). Let's take a look at our zoom in on governance, shown in Figure 2.13:

Figure 2.13 – Zoom in on governance

The GOVERNANCE zoom-in map has four top-level groups:

• PRE-CONFIGURED COMPLIANT WORKLOADS

• AZURE POLICIES

• HIERARCHY

• OVERSIGHT

50 Solution Architecture

Let's start with Azure Policy. Azure governance is directly linked to the strategy of the
cloud journey, which we discussed in Chapter 1, Getting Started as an Azure Architect.
The good news is that a documented strategy can be enforced in a tangible manner,
through Azure policies. As a solution architect, whether designing a solution for your
own organization or for a customer, you must know which policies are enforced in the
hosting environment. This must be anticipated, in order to avoid any unwanted surprises
later on. For instance, you might be using APIM in the Basic or Standard tier in your
solution diagram. Later on, the target hosting environment might include policies that
prevent the creation of public IP addresses, which will directly prevent the provisioning of
your APIM instance. You should always ask for policies before starting anything. Similarly,
Role-Based Access Control (RBAC) rules who can do what with Azure, including
DevOps pipelines used to deploy solutions.

Azure Policy is tightly coupled to the hierarchy, our second top-level group. The hierarchy
reflects the structure of an organization, as well as all the scopes over which Azure policies
are applied. You can define a hierarchy without policies, but in practice, it never happens,
except in pure sandbox environments. The hierarchy is composed of management groups,
subscriptions, and resource groups. Each of these levels is an RBAC and policy scope. In
practice, you might have hierarchies that are business-driven, as shown by Figure 2.14:

Figure 2.14 – Hierarchy with business lines

Zooming in on the different workload types 51

Hierarchies might also be more IT-driven, as shown in Figure 2.15:

Figure 2.15 – IT-driven hierarchy

You may combine both business and IT groups by using nested management groups.

Our third top-level group is OVERSIGHT, which only contains Azure Resource Graph,
a tool that facilitates resource exploration. It is somehow similar to a configuration
management database (CMDB) repository.

Last but not least, pre-configured compliant workloads, our fourth top-level group,
may be achieved through the use of Azure Blueprints. The purpose of blueprints is to
combine IaC techniques with proper policy and RBAC assignments, so as to adhere to the
organization's standards.

Admittedly, the global landing zone is often handled by infrastructure and security
architects. However, the solution architect, who must think about all the aspects of
a solution, should always gather as much information as possible about the landing zone.
Even better, solution architects should try to contribute to the definition of the landing
zone, so as to reflect more than only security and infrastructure aspects.

52 Solution Architecture

Looking at cross-cutting concerns and the cloud
journey
You cannot fully address every cross-cutting concern on day one. Otherwise, day one will
be postponed over and over again. In your cloud journey and strategy, you should include
different maturity levels, integrate them in a roadmap, and map them to the different
workload types and their associated business values and risks. Remember that you do not
build your on-premises infrastructure and services in a week. This approach allows you to
start small and grow over time, while delivering your solution in a timely fashion.

Now that we have browsed the different workload types and some of the typical
cross-cutting concerns, let's zoom in on a very popular topic: containerization.

Zooming in on containerization
Containers are everywhere and on everyone's lips! In the following sections, we will
explore Azure's container offering.

The Azure platform supports different flavors, which range from single-container
support to full orchestrators. The solution architecture map already describes the different
high-level use cases. Therefore, let's zoom deeper with a richer map that specifically
targets containers (see Figure 2.16):

Figure 2.16 – Zoom in on containers

Zooming in on containerization 53

Microservices are one of the top use cases for running container orchestrators, such
as AKS. Service Fabric Mesh has been designed at its core to deal with microservice
architectures, by providing both stateless and stateful services. However, over the past 2
years, the adoption of Kubernetes worldwide has grown so fast that Microsoft's focus has
now shifted to AKS. To bring statefulness (and more) to services in your AKS cluster, you
can leverage Distributed Application Runtime (Dapr), which brings an abstraction layer
between the application code and its state stores, secret stores, and so on. Dapr also brings
the actor model to Kubernetes. Dapr is multi-cloud, and it has connectors to many stores,
as illustrated by Figure 2.17:

Figure 2.17 – Dapr bindings

Coming back to Figure 2.16, Azure Functions is available on both the serverless and
PaaS offerings. The pricing model is not the only difference between the two flavors.
PaaS-hosted Azure Functions have more capabilities, such as integrating with virtual
networks. The following link provides a great view of all the network options, from the
perspective of Azure Functions hosting: https://docs.microsoft.com/azure/
azure-functions/functions-networking-options.

https://docs.microsoft.com/azure/azure-functions/functions-networking-options
https://docs.microsoft.com/azure/azure-functions/functions-networking-options

54 Solution Architecture

Many Azure services can be hosted as containers, which is useful when you have
workloads running at the Edge, multi-cloud workloads, and hybrid deployments. Of
course, when you self-host an Azure service, you are responsible for ensuring high
availability and disaster recovery (which is an end-to-end scenario). You have to bring
your own compute, but you have the advantage of being able to run the service within
a perimeter that you control. It is still very important to assess the pros and cons of
self-hosting a service.

Other dimensions (such as costs, complexity, and the level of operations incurred
by each containerization approach) are very important too. Figure 2.18 highlights
these dimensions:

Figure 2.18 – A comparison table of container options

You should always try to follow a low-low-low path whenever applicable (such as ACI and
Azure Functions on consumption), since it will be easier, cheaper, and quicker for your
time-to-market.

Solution architecture use case 55

Solution architecture use case
In the following sections, we will focus on a concrete use case (description follows). Our
objective is to help you build a reference architecture, by using the map as your Azure
compass to find the relevant options for a given business scenario.

Looking at a business scenario
Since we decided to zoom in a little more on containerization in this chapter, we will
demonstrate one possible usage of containers in a workflow-like scenario.

For our example, we will consider the following requirements:

Contoso needs a configurable workflow tool that allows you to orchestrate multiple resource-
intensive tasks. Each task must launch large datasets to perform in-memory calculations. For
some reason, the datasets cannot be chunked into smaller pieces, which means that memory
contention could quickly become an issue under a high load. A single task may take between
a few minutes to an hour to complete. Workflows are completely unattended (no human
interaction) and asynchronous. The business needs a way to check the workflow status and
be notified upon completion. Also, the solution must be portable. Contoso's main technology
stack is .NET Core. Of course, this should have been done yesterday, and there is not much
budget allocated to the project.

These few constraints might sound very familiar to you! The next section focuses on the
most important keywords that should draw your attention.

Using keywords
As an Azure solution architect, you must capture the essential part of a story. Here are a
few keywords that can structure your train of thought when building the solution. Let's
review them one by one:

• Portability: Whenever portability comes as a requirement, containers should be the
default answer.

• .NET Core: The company often wants the project to be realized as soon as possible,
with the technology stack they already master. We cannot bring in a solution that
would be too disruptive skills-wise.

• Resource-intensive tasks: In the cloud, like in every environment, there is no free
lunch. If you want compute power, you must pay for it. Given that we have a low
budget, we won't be able to afford plain virtual machines with high memory and
CPU profiles.

56 Solution Architecture

There is, however, a way to reduce costs by only paying for the allocated resources
when you need them. We'll expand on the concept of a serverless approach, which
we mentioned in the first chapter.

• Task duration: This criterion is a structuring factor, as it eliminates some hosting
options, such as Azure Functions hosted on the consumption pricing tier (which
cannot exceed 10 minutes of execution). One option could be Azure Functions on
pre-paid pricing tiers.

• Workflow: A workflow is a sequence of steps that are executed in a coordinated way.
This aspect is important because it reduces the field of possibilities.

Let's now see how to make use of the map to progress in our thinking process.

Using the solution architecture map against the
requirements
Now that we have highlighted the important keywords, let's take a look at our map to
try and make sense of it. We'll form a reference architecture, which you could reuse for
other projects later (where you have similar needs). We will now look at some workflow/
orchestration capabilities, which is one of our map concerns. Figure 2.19 is a subset of the
solution architecture map:

Figure 2.19 – The workflow capabilities

A workflow is an orchestration, and we see two possibilities (under ORCHESTRATION
WORKFLOWS in Figure 2.19): DURABLE FUNCTIONS and LOGIC APPS. Logic Apps
seems more appropriate for integration scenarios. Since our workflow is scoped to a single
application, Durable Functions might be a fit. As you can see, it is hard to make a choice
that is based on Figure 2.19. Figure 2.20 is another small map that may help you choose
between Logic Apps and Durable Functions, beyond the scope of our scenario:

Solution architecture use case 57

Figure 2.20 – A map focused on Logic Apps and Durable functions

The manpower you have at your disposal is one of the factors to consider. Logic Apps is
fully declarative, and it does not require any programming skills. Durable Functions is
mostly developed for the scope of a single application. We will therefore consider using
Durable Functions for our scenario, because we know we have .NET developers, and we
do not have to deal with a workflow that goes beyond the scope of our single solution.
Beyond this book, the map will help you find relevant services for a given use case,
but it is up to you to dig further and understand exactly what is behind the service in
question. Since we are in the context of the book, we can cheat a bit and give you an extra
explanation about Durable Functions, which we have just selected. As stated before, it
is particularly useful for workflow-like workloads. It differs from mere Azure Functions
in that it is stateful and not stateless. A workflow needs to persist its state and resist a
temporary outage, in order to resume to the correct point in time when the outage is over.
Azure Durable Functions leverages the durable framework, which persists the state into
a storage account for you. It will automatically watch for events that are related to the
orchestration and it will ensure a proper follow-up of the different activities. We will see
the durable framework in action later in this use case.

58 Solution Architecture

Similarly, Figure 2.21 (a subset of the Azure solution architecture map) shows
cost-friendly and potentially resource-intensive-friendly services, under the
containerization concern:

Figure 2.21 – The container options

Looking at our use case, it might be a good fit to go with the serverless nature of ACI
as a hosting platform to host and execute our workflow tasks (especially for our limited
budgets). The map alone is not sufficient to decide between ACI and Azure Batch, in order
to fit with our resource-intensive requirements. As an Azure solution architect, you need
to further analyze the difference between ACIs and Azure Batch. This is an example that
shows the limits of the maps. They will help you get the big picture, but you have to do
your homework (with further analysis and research) at some point.

After your analysis, you realize that ACI may also be used for resource-intensive tasks, and
it is capable of running both Windows and Linux containers, which is fully in line with
our technology stack. In the next section, we will see how to infer a reference architecture
from these preliminary conclusions.

Building the target reference architecture
With this progress, you are ready to build your reference architecture. Of course, there is
never a one-size-fits-all approach, but Figure 2.22 shows you a possible solution:

Solution architecture use case 59

Figure 2.22 – A sample reference architecture

There are small numbers on the diagram that we explain as follows:

1. Azure Blob storage, part of a storage account, receives the incoming blobs to be
treated by the workflow. These are the large files we referred to in our scenario.

2. Upon the setup of Blob storage, a durable client (that has a Blob storage binding)
is kicked off. Later, it starts a new orchestration, while passing some orchestration
configuration (such as the number of steps, retries, timeouts, and so on).

3. The main orchestrator, which could have sub-orchestrators, in turn provisions one
container instance per workflow step, and it passes a callback URL that is used by
ACI to report its status and to optionally return a pointer to the input data of the
next task.

4. ACI gets the input blob that it needs to handle.

5. ACI writes output to another Blob storage.

60 Solution Architecture

The overall process contains one or more steps, and each step is allocated a dedicated ACI
with the required compute, which is a maximum of four CPUs and 16 GB of RAM (at the
time of writing). Each task may execute in parallel or one after the other, depending on
the orchestrator logic. Figure 2.23 is an iteration of a sequential workflow that could be
handled by our reference architecture:

Figure 2.23 – A sequential workflow example with Durable Functions and ACI

The main orchestrator starts with one sub-orchestrator per workflow task. Each task
creates a container instance and waits for its feedback through the WaitForExternalEvent
operation. The Durable Functions framework allows you to handle retries and timeouts.
Whatever the workflow step status is (such as failed or timed out), the corresponding
ACI is deleted, and the main orchestrator either retries, stops the orchestration, or goes
to the next step. Such orchestration logic could be injected dynamically by the
orchestrator client.

Solution architecture use case 61

The following code snippet is an example of a configuration workload that we can pass to
a new orchestration instance:

Important note
The full .NET project code, which includes all the following code snippets,
is available on the GitHub repository here: https://github.
com/PacktPublishing/The-Azure-Cloud-Native-
Architecture-Mapbook/tree/master/Chapter02/code/
PacktOrchestrationDemo:

{

 "isRewindable": true,

 "defaultStepTimeOut": 5,

 "steps": [

 {

 "stepName": "step1",

 "maxRetryCount": 2,

 "stopFlowOnFailure": true,

 "timeOut": 5

 },

 {

 "stepName": "step2",

 "maxRetryCount": 0,

 "stopFlowOnFailure": false,

 "timeOut": 3

 }

]

}

We instruct the orchestrator to run two steps and that the workflow is stopped if step 1
fails more than three times. Let's explore this solution further by looking at some code.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter02/code/PacktOrchestrationDemo
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter02/code/PacktOrchestrationDemo
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter02/code/PacktOrchestrationDemo
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter02/code/PacktOrchestrationDemo

62 Solution Architecture

Code view of our workflow-based reference
architecture
Next, let's explore a code sample in .NET Core that implements this architecture.
Note that this is only for demonstration purposes and is not intended to be used
directly in production.

As shown in the previous section, we can inject the payload via a JSON HTTP POST
body. The following two classes are the object presentation of this JSON payload:

public class OrchestrationConfiguration{

 public bool isRewindable { get; set; }

 public int defaultStepTimeOut { get; set; }

 public List<OrchestrationStep> steps { get; set; }

}

public class OrchestrationStep{

 internal string instanceId { get; set; }

 public string stepName { get; set; }

 public int maxRetryCount { get; set; }

 public bool stopFlowOnFailure { get; set; }

 public int timeOut { get; set; }

}

The next Azure Durable Functions can be triggered like regular functions by using
proper bindings. In this example, we use an HTTP trigger binding, which starts a
new orchestration:

[FunctionName("StartOrchestration")]

public static async Task<HttpResponseMessage>
 StartOrchestration(

 [HttpTrigger(AuthorizationLevel.Anonymous, "post")]
 HttpRequestMessage req,

 [DurableClient] IDurableOrchestrationClient starter,

 ILogger log){

 string instanceId = await starter.StartNewAsync(
 "MainOrchestrator",

 JsonConvert.DeserializeObject<
 OrchestrationConfiguration>(

Solution architecture use case 63

 await req.Content.ReadAsStringAsync()));

 return starter.CreateCheckStatusResponse(
 req, instanceId);

}

In the real world, you would place this function behind an API gateway. The
IDurableOrchestrationClient output type includes a function that interacts
with an orchestrator, to either start a new one or to provide some feedback to a running
orchestration. In the preceding piece of code, we start a new orchestration and pass the
deserialized JSON body.

Next, we run the orchestration itself:

[FunctionName("MainOrchestrator")]

public static async Task MainOrchestrator(

 [OrchestrationTrigger] IdurableOrchestrationContext
 context, ILogger log)

{

 OrchestrationConfiguration process =
 context.GetInput<OrchestrationConfiguration>();

 foreach (OrchestrationStep step in process.steps)

 {

 var retryOptions = new RetryOptions(

 firstRetryInterval: TimeSpan.FromSeconds(5),

 maxNumberOfAttempts: (step.maxRetryCount>0)?
 step.maxRetryCount+1:1);

 try

 {

 step.timeOut = (step.timeOut == 0) ?
 process.defaultStepTimeOut : step.timeOut;

 var result = await context
 .CallSubOrchestratorWithRetryAsync<bool>(

 nameof(SingleStepOrchestration),

 retryOptions, step);

 }

64 Solution Architecture

 catch

 {

 if (!context.IsReplaying)

 {

 log.LogWarning("step {0} failed",
 step.stepName);

 if (step.stopFlowOnFailure)

 break;

 }

 }

 }

 log.LogInformation("ORCHESTRATION IS OVER");

}

For each step injected by our configuration payload, we start a sub-orchestration, with the
retry options and timeout defined. We check whether the workflow should stop, in case
the current step failed. In our example, we injected two steps in the payload. The first step
has its stopFlowOnFailure property set to true, so if step 1 fails, the workflow stops.

Next, we have the step-related code itself:

[FunctionName(nameof(SingleStepOrchestration))]

public static async Task<bool> SingleStepOrchestration(

 [OrchestrationTrigger] IdurableOrchestrationContext
 context,

 ILogger log)

{

 try

 {

 var step = context.GetInput<OrchestrationStep>();

 log.LogInformation("CREATING ACI for {0} on instance
 {1} ",

 step.stepName, context.InstanceId);

 log.LogInformation("CALLBACK URL
 http://localhost:7071/api/stepResultCallback?
 instanceId={0}&eventName={1}&status= ",

 context.InstanceId, step.stepName);

 log.LogInformation("WAITING FOR EVENT {0} on

Solution architecture use case 65

 instance {1}", step.stepName,
 context.InstanceId);

 var state = await
 context.WaitForExternalEvent<string>(

 step.stepName, TimeSpan.FromMinutes(step.timeOut));

 log.LogInformation(

 "STEP {0} INSTANCE IS {1} STATE IS {2}",

 step.stepName, context.InstanceId, state);

 if (state != "ok")

 {

 log.LogInformation("state NOK");

 throw new ApplicationException();

 }

 }

 catch(TimeoutException)

 {

 log.LogInformation("TIMEOUT");

 throw;

 }

 finally

 {

 log.LogInformation("deleting ACI");

 }

 return true;

 }

}

For the sake of brevity and simplicity, we do not really provision a container instance. We
simply log the fact that we would do so. We generate a callback URL to pass to ACI and
we let it report its status to the orchestrator.

66 Solution Architecture

Next, we wait for an external event, which is nothing more than the ACI feedback, which
we will simulate in the next section. The timeout makes sure we do not wait forever,
should the ACI crash unexpectedly or remain in a hanging state. Once we receive the
feedback, we check whether it is okay or not (admittedly in a naïve way here) to report it
back to the main orchestrator. In the case of an issue, we throw an exception, in order to
make sure the main orchestrator catches it.

Here is the function that ACI calls back (thanks to the provided callback URL) in order to
report its status:

[FunctionName("stepResultCallback")]

public static async Task stepResultCallback(

 [HttpTrigger(AuthorizationLevel.Anonymous, "post")]
 HttpRequestMessage req,

 [DurableClient] IDurableOrchestrationClient cli,

 ILogger log)

{

 string eventName = req.RequestUri.ParseQueryString()
 .Get("eventName");

 string status = req.RequestUri.ParseQueryString()
 .Get("status");

 log.LogInformation($"RECEIVED FEEDBACK FROM {eventName}
 WITH STATUS {status}");

 await cli.RaiseEventAsync(req.RequestUri.
 ParseQueryString().Get("instanceId"),
 eventName, status);

}

We basically raise the event back to the sub-orchestrator by using its instance identifier. In
the preceding example, we again use an HTTP trigger, but we could bind this to a queue
where ACI would drop messages to return its feedback. Here, again, the function would
be placed behind an API gateway and would be secured using either a function key or an
AAD access token.

For your information, one of the Durable Functions gotchas is versioning, because you
need to make sure that you do not inject breaking changes. You must also work with
deterministic APIs only. Going deeper into this is a prerogative of the application architect
or a senior developer.

Let's see this code in action.

Solution architecture use case 67

Looking at the code in action
Looking at code blocks is sometimes a little too abstract. Let's see this code in action:

1. Using Visual Studio and Fiddler, we will kick off a new orchestration. Clone the
GitHub repo (https://github.com/PacktPublishing/The-Azure-
Cloud-Native-Architecture-Mapbook) locally.

2. Open the solution file in /Chapter02/code/PacktOrchestrationDemo.
sln and run the project from Visual Studio 2019. Figure 2.24 shows the Azure
Functions runtime running locally:

Figure 2.24 – The Azure Functions runtime running locally

Important note
If you are prompted by Windows Firewall (or another prompt), allow the
action.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook

68 Solution Architecture

The program is now waiting for a new orchestration to start. We will do so by using
Fiddler (you could use Postman as well). See Figure 2.25:

Figure 2.25 – Starting the orchestration

3. Using the Composer tab, we craft our POST query to the starter function endpoint.
We pass a sample payload, which you can download from: https://github.
com/PacktPublishing/The-Azure-Cloud-Native-Architecture-
Mapbook/blob/master/Chapter02/code/PacktOrchestrationDemo/
samplepayload.json, which basically states the following:

There are two steps in our workflow.

The first step is allowed to fail or time out twice (first time +1 retry).

If the first step fails twice in a row, the whole workflow stops.

Whether the second step (and the last step, in this case) fails or succeeds, this
should not be retried, nor should it stop the workflow.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter02/code/PacktOrchestrationDemo/samplepayload.json
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter02/code/PacktOrchestrationDemo/samplepayload.json
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter02/code/PacktOrchestrationDemo/samplepayload.json
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter02/code/PacktOrchestrationDemo/samplepayload.json

Solution architecture use case 69

Upon executing the preceding Fiddler request, the orchestrator starts (see
Figure 2.26):

Figure 2.26 - The orchestration kicked off

4. The orchestration indicates that it waits for step 1 to complete. Using the
provided callback URL, we can simulate the response of ACI with Fiddler again
(see Figure 2.27):

Figure 2.27 – Simulating step 1, the ACI response
In this case, we returned NOK, meaning that step 1 failed (this stands for not okay),
and this is captured by our orchestration, as shown in Figure 2.28:

Figure 2.28 – The failed step 1 captured

70 Solution Architecture

5. The error is displayed, and a new callback URL is returned to retry step 1, because
we said it could be retried. See Figure 2.29:

Figure 2.29 – Step 1 is retried and a status of "ok" is returned
This time, we returned a status of ok for step 1. This is also captured, and the
orchestrator now waits for step 2 to complete, with a new callback URL. See
Figure 2.30:

Figure 2.30 – Waiting for step 2

6. Now, we can return step 2's feedback. See Figure 2.31:

Figure 2.31 – Returning "ok" feedback for step 2
Our orchestrator captures the ok feedback, and it ends the orchestration, because
the last step is executed. See Figure 2.32:

Figure 2.32 – Orchestration is over

7. You can fiddle with the configuration as you wish, in order to test the different
variants, which we will not do here (as it's beyond the scope of our goal of
architecture). Instead, we will show the effect of the timeout by starting a new
orchestration, as shown in Figure 2.33:

Solution architecture use case 71

Figure 2.33 – Testing a timeout

Here, we specify a 1-minute timeout (no retry) and that the workflow should stop upon
failure. A minute later, doing nothing, the orchestrator catches the timeout exception and
stops the orchestration, as illustrated in Figure 2.34:

Figure 2.34 – The timeout exception captured by the orchestrator

Note that these types of workflows, with the retry mechanisms, assume that the steps are
idempotent (unchanged).

We designed our architecture (the diagram), and we even prepared some boilerplate code
to create a proof of concept.

Let's now see, in the next section, what is still missing.

72 Solution Architecture

Understanding the gaps in our reference architecture
We may think we did a great job earlier when designing our reference architecture, but it
suffers from important gaps. Look again at Figure 2.35:

Figure 2.35 – Where are the non-functional requirements?

We have not covered the cross-cutting concerns. We mostly focused on the building
blocks and their interactions, but we did not cover anything about monitoring, security,
resilience, and so on. Sometimes, it can be challenging to reflect everything in a single
diagram, because it makes that diagram either too big or too complex to understand. To
overcome this, a possibility is to work with different views, scoped on specific areas. Doing
so will also help you engage with your peers, as well as with more specialized architects.

Summary 73

The solution architecture map cannot go too deep into each domain, because it would
simply be too broad. You can't cover a bunch of non-functional requirements (NFRs).
Using only this map to cover all the NFRs is not possible. As a solution architect, you will
also need to refer to other maps in this book to find your way in other fields and you'll
perhaps also need to ask for extra help from infrastructure and security architects. The
views that should be added to this architecture are as follows:

• Monitoring view: This is where you add Azure Monitor, Log Analytics, and
dashboards into the mix. You might have to add Splunk or any other on-premises
tool that your organization (or your customer) is using. This is doable by only using
the solution architecture map.

• Security view: This is where you indicate the different authentication mechanisms,
such as Shared Access Signature (SAS) tokens, managed identities, OAuth flows,
and so on. You also specify which API gateway policies would enter into play, as
well as the secret stores, encryption mechanisms, and so on. The security map in
Chapter 7, Security Architecture, will help you here.

• High-availability and disaster recovery views: Here, you focus on the availability
and resilience of your solution. The infrastructure map of this chapter will help
you here.

• Deployment view: Here, you focus on the factory and the post-deployment
provisioned components.

Once you have read the other chapters and digested them, we will review this architecture
with all these aspects covered! As we stated previously, we will start with the easy things,
but the complexity will grow as we go.

Summary
In this chapter, we described the solution architecture map and its different classification
categories, which are SoE, SoR, SoI, and systems of interaction (IPaaS). This
categorization, commonly used in architecture, makes it easier to dispatch services.
We provided explanations and extra-focused maps, which helped further refine the
alternatives.

We also emphasized the importance of cross-cutting concerns that apply to every solution,
and we discussed which concerns should be considered by solution architects. Remember
that it might be too challenging to address all of the concerns on day one of your cloud
journey. It is, therefore, interesting to think of different maturity levels, and how we would
put them on a roadmap to manage our stakeholders' expectations.

74 Solution Architecture

Next, we highlighted the containerization components, with a focused map that depicted
the container landscape of Azure. We also considered other dimensions, such as cost,
complexity, and the level of residual operations of each option.

Lastly, we went through an exercise that consisted of building a solution architecture, with
the help of the solution architecture map, when given a business scenario. We also walked
you through a code sample that implemented this architecture.

In the next chapter, we will cover infrastructure-related aspects, such as monitoring,
connectivity, and disaster recovery, which should help you complete the reference
architecture we have built in this chapter. Later, we will provide more detailed coverage
of AKS, one of the most popular services.

3
Infrastructure

Design
In this chapter, we will focus on infrastructure architecture with Azure. Here, we will
review the different concerns that every infrastructure engineer and architect has to deal
with on a daily basis. More specifically, we will cover the following topics:

• The Azure infrastructure architecture map

• Zooming in on networking

• Zooming in on monitoring

• Zooming in on high availability and disaster recovery

• Zooming in on backup and restore

• Zooming in on HPC

• The AKS Architecture Map and a reference architecture for microservices

76 Infrastructure Design

We will provide a 360˚ view of what it means to build infrastructure with Azure, including
the most common practices and pitfalls. We will also see how challenging it is to have a
consistent and coherent disaster recovery approach by walking you through a concrete
real-world use case on a globally distributed API offering. Last but not least, we will
dedicate a good part of this chapter to AKS, which has become a first-class citizen in many
architectures, among which is the very popular microservices architecture. Reading this
chapter will make you aware of some best practices and will help you gain insights into
top-notch and trendy infrastructure topics in the Azure space.

Technical requirements
In this chapter, we will be using Microsoft Visio files. You will need Microsoft Visio to
open the diagrams, although the corresponding PNGs are also provided.

The maps and diagrams used in this chapter are available at https://github.com/
PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/
tree/master/Chapter03.

The Azure infrastructure architecture map
The Azure infrastructure architecture map (as shown in Figure 3.1) is intended as your
Azure infrastructure compass. It should help you to deal with the typical duties of an
infrastructure architect, which we described in Chapter 1, Getting Started as an Azure
Architect. Unlike the solution architecture map, which was more high-level, this map is a
vertical exploration of infrastructure topics. It is by no means the holy grail, but it should
help you to grasp the broad infrastructure landscape at a glance. Throughout this chapter,
we will describe its various elements, and apply context using real-world implementations:

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter03
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter03
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter03

The Azure infrastructure architecture map 77

Figure 3.1 – The Azure infrastructure architecture map

Important note
To see the full Infrastructure Architecture Map (Figure 3.1), you can download
the PDF file available at https://github.com/PacktPublishing/
The-Azure-Cloud-Native-Architecture-Mapbook/blob/
master/Chapter03/maps/Azure%20Infrastructure%20
Architect.pdf.

The Azure Infrastructure Architect Map (Figure 3.1) has several top-level groups:

• NETWORK: This fundamental foundation is ubiquitous, and part of all the debates
and trade-offs. Traditional IT is entirely based on the perimeter approach, which
sometimes conflicts with the cloud's zero-trust approach. We will detail our options
further in the Zooming in on networking section and will tackle the security-related
bits in Chapter 7, Security Architecture.

• MONITORING: Once an application is built, we must run and monitor it.

• GOVERNANCE/COMPLIANCE & SECURITY: Governance and security are both
key aspects of well-managed infrastructure. For the sake of brevity, we will explore
this topic in Chapter 7, Security Architecture.

• HIGH AVAILABILITY and DISASTER RECOVERY: Every system/application
might require some level of resilience. We have grouped these two top-level groups
in the Zooming in on high availability and disaster recovery section.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter03/maps/Azure%20Infrastructure%20Architect.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter03/maps/Azure%20Infrastructure%20Architect.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter03/maps/Azure%20Infrastructure%20Architect.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter03/maps/Azure%20Infrastructure%20Architect.pdf

78 Infrastructure Design

• BACKUP/RESTORE: Azure has its own backup/restore mechanisms, which do
not have much in common with traditional backup/restore mechanisms. We will
explore this further in our Zooming in on backup and restore section.

• HPC: HPC stands for high-performance computing. Why not use the potentially
limitless (except for our wallet) power of cloud infrastructure? We'll analyze the
different HPC options in our Zooming in on HPC section.

• INFRASTRUCTURE AS CODE (IaC): IaC is such a large topic that we will explore
it in Chapter 4, Infrastructure Deployment.

Now that we have highlighted the most important topics of our map, we will explore each
of them, one after the other. Let's now focus on the networking aspects, to get acquainted
with one of the most important infrastructure concerns.

Zooming in on networking
Networking is one of the essential foundations of any Azure landing zone. Figure 3.2
shows the various connectivity options available in Azure:

Figure 3.2 – Zooming in on networking

Zooming in on networking 79

We introduced the landing zone concept in Chapter 2, Solution Architecture. We briefly
explained that the purpose of a landing zone is to structure, govern, and rule the Azure
platform for the assets that will be hosted on it. Controlling network flows is one of the
key governance aspects. Controlling the network means mastering internal and external
traffic, inbound and outbound, flow logs, and so on. This is a vast topic and an important
challenge. Let's now dive deeper. The network section has five top-level groups:

• DNS

• MOST COMMON ARCHITECTURE

• DC CONNECTIVITY

• ZONING

• ROUTING

In the DNS section of Figure 3.2, we see two DNS services, which are public and private
DNS zones:

• Azure DNS zones help you manage your public endpoints. In some situations,
you might want to delegate the management of a single domain to an Azure public
DNS zone. In doing so, you will create TXT, A, and CNAME records directly in
Azure, instead of in your own DNS server. The benefit is, of course, to use a fully
managed service.

• Private DNS zones help resolve privately addressable IP addresses. For example,
when enabling Azure Private Link for a storage account, Azure makes use of
private DNS zones to map a record (of type A) to the private IP of the storage
account. They also create a CNAME record as an alias, between the public and the
private endpoints. Private DNS zones are also used when setting up a private AKS
cluster, which we will see in the AKS Architecture Map and a reference architecture
for microservices section, as a way to map the API server name to its private VIP.

Note that conditional forwarding is currently not supported with private DNS zones,
which leads to a situation where you need a self-hosted DNS server to route traffic
between on-premises and Azure. This is usually achieved with the most common
architecture, which we will describe in the next section.

80 Infrastructure Design

The most common architecture
As we briefly described in Chapter 1, Getting Started as an Azure Architect, the hub and
spoke architecture, presented in Figure 3.3, is the most frequent hybrid setup:

Figure 3.3 – Hub and spoke architecture

On the left-hand side of Figure 3.3, we have the on-premises network that is connected to
the Azure Hub through either ExpressRoute or VPN. The Azure Hub is itself connected
to the different spokes, which represent the assets deployed to Azure.

The Azure Hub is nothing but a regular Azure Virtual Network (VNet). Its role is to
route traffic between spokes and between the on-premises and cloud data centers. Each
spoke, which is also a VNet, is peered to the Hub. VNet peering is non-transitive in Azure,
meaning that if spoke 1 is connected to spoke 2 and 2 is connected to 3 (not present in
the sample diagram), then 1 cannot talk directly to 3. Consequently, the hub and spoke
architecture is used to simplify the structure and to have a central VNet that is connected
to all the others.

Peering spokes directly is also possible, but it is usually not recommended because of the
extra operational overhead. VNet peering is global, meaning that you can peer a VNet that
sits in the West US region with another one sitting in the West Europe region, but beware
that cross-regional peering incurs extra outbound traffic costs. Each spoke usually hosts
the services of one single asset, while the shared services (DNS for instance, as highlighted
in our previous section) are hosted in the hub.

Zooming in on networking 81

Beware that it might take you several months to set up the hub and spoke architecture and
to connect the Hub to the on-premises data center. This is often overlooked by customers,
but this is by no way a trivial thing because it involves the network and security teams,
which often have no or very little Azure expertise. Also make sure you consider all the
services that cannot be created inside a VNet (Azure Functions on the consumption tier,
serverless Azure Data Factory, Cognitive Services, and so on), which make them de facto
not fully compatible with the Hub and Spoke architecture. This might be very confusing
because most services can be private-link-enabled but this is not at all a full fit with
hub and spoke. We will tackle, in detail, private connectivity and firewalls in Chapter 7,
Security Architecture. The message we want to convey here is this: do not have a one-size-
fits-all approach and think that you will have no more public endpoints or that you will
control them all!

We will now look through our options to connect Azure to our data center.

Data center connectivity options
As shown in Figure 3.2, a site-to-site (S2S) VPN is mostly used in small-scale production
workloads, meaning that the volume of traffic between on-premises and Azure remains
low. With a VPN, you may have a ton of assets deployed in Azure with a low volume of
interactions between both data centers. Volume is not the only thing to consider since the
VPN option does not come with any SLA, in terms of resilience and latency. Azure supports
many VPN protocols, such as Secure Socket Tunneling (SSTP), OpenVPN, and IKEv2.

For mission-critical hybrid workloads, we recommend that you rely on Azure
ExpressRoute (ER). ER is fully supported by Microsoft, with guaranteed SLAs, such as
an uptime of 99.95%. The bandwidth you have depends on your ER subscription, and it
ranges from 50 Mbps to 100 Gbps for ExpressRoute Direct.

Connectivity between the on-premises data center and Azure is usually ensured by a
telecom provider or a cloud exchange broker (CEB), which consists of having a central
connection point to a partner, such as Equinix. You would then get the traffic routed
to the cloud provider, such as Azure, AWS, Salesforce, and so on. If you already have a
connection to a CEB or a telecom provider, ER activation can be fast, or else it might
take several months, depending on whether your data center is located near urban
infrastructures or not. Besides an S2S VPN, you can also use a point-to-site (P2S) VPN,
but this is mostly while starting your cloud journey (for example, as a temporary way to
overcome the lack of a proper S2S or ExpressRoute setup).

82 Infrastructure Design

Azure Bastion (AB) can also be used to connect on-premises machines to Azure-hosted
virtual machines, without the need for public IP addresses for the VMs, nor a pre-existing
S2S VPN or ExpressRoute. AB must be deployed its own dedicated subnet named
AzureBastionSubnet. You can see it as a managed jump box, with a hardened public access
point, from which you can connect to non-public VMs, using the Azure portal directly
(a mere browser), instead of RDP/SSH. Traffic between the client and AB occurs over TLS,
and the traffic is switched to RDP/SSH between AB and the target VM. Consequently, there
is no need to expose ports 3389/22 publicly nor to open these ports in your on-premises
firewalls. Without AB nor any other pre-existing private connectivity setup, your VMs must
have a public IP to be accessible. If you do not want to pay for AB (or are still exploring
Azure), you should at least enable Security Center's JIT (not to be confused with PIM's
JIT) feature to limit the public exposure of your VMs. The purpose of JIT is to enable just-
in-time incoming inbound traffic on demand and to block it after use.

Before effectively connecting data centers together, you need to think about your network
zoning, and that is what we will discuss next.

Zoning
Network zoning is ensured by VNets and subnets. Each VNet is divided into different
subnets that can communicate by default. When layering your VNets, make sure to
calculate each subnet size carefully. When dealing with virtual machines only, it is rather
easy to anticipate the number of IP addresses that will be required per subnet. This is not
the same with Azure-native services, such as API Management, Application Gateway,
AKS, and so on. You must also consider that Azure reserves five IP addresses for each
subnet that is created.

You should always double-check Microsoft recommendations on the minimal required
per-service subnet size, and you should consider scaling from the start. A subnet size
cannot be altered, as long as some resources depend on it. So, you could quickly face
issues in production, should your subnets not be large enough. Another thing to consider
is that VNet address spaces should not overlap with each other. You may only neglect
this aspect when working with isolated VNets that are not (and never will be) peered to
other VNets, nor to the on-premises environment. Note that Azure VNets support both
IPv4 and IPv6 address spaces, and they can even serve dual-stack systems. However, some
services such as Azure Application Gateway still only work with IPv4. However, Azure
services gradually increase their IPv6 compatibility, but keep their capabilities in mind
when designing your networks. Once your VNet and subnet plumbing (address spaces,
layering, and peering) are ready, you need to analyze your routing and firewalling options,
and that is what comes next.

Zooming in on networking 83

Routing and firewalling
The last top-level group of Figure 3.2 is routing and firewalling. Azure makes use of
system routes, which allow subnets to communicate, as well as peered VNets. Outbound
traffic to the internet is also enabled by default, as well as publicly accessible workloads,
such as virtual machines with a public IP. However, in a hub and spoke setup, subnets are
associated with user-defined routes (UDR), which override system routes, allowing them
to ultimately forward the traffic to the Hub.

A common approach is to rely on a network virtual appliance (NVA) in the Hub, to rule
the network traffic. Companies often purchase NVAs to keep using their existing software,
such as Palo Alto, Check Point, and Citrix (to name a few). While this is understandable,
none of these NVAs were initially designed for the cloud, and you must manage them
entirely yourself.

An alternative option is to use Azure Firewall, a fully managed service that allows you
to rule both inbound and outbound traffic. Feature-wise, Azure Firewall is still not at
the same level as its marketplace competitors. One of the most in-demand features is an
Intrusion Detection System (IDS)/Intrusion Prevention System (IPS), which is still
not supported at this time, although Azure Firewall can block some threats identified
by Microsoft Threat Intelligence. If IDS/IPS is not a strong requirement (imposed by
regulators), you should always favor Azure Firewall over NVAs, as it was conceived for
cloud-native workloads, and Azure Firewall is highly available and scalable by design.
Note that as of December 2020, there is a private preview going on for IDS/IPS with Azure
Firewall, and we can therefore reasonably expect to have this feature generally available by
2021/early 2022.

Setting up the NVA, making sure it is highly available and that it is disaster recovery
compliant, is rather hard and has a huge impact on costs. So, think twice before rushing to
an NVA. Start from the actual requirements, not from the solution.

When dealing with web apps and APIs, you are also required to have a pure layer 7 web
application firewall (WAF). Azure Application Gateway is not only a reverse proxy, but
it also can be enabled with out-of-the-box WAF policies to protect against the OWASP
top 10. The policies can be tailor-made for your needs. Azure Application Gateway can be
connected to both private and publicly accessible backends, as opposed to Azure Front
Door (AFD), which can currently only connect to public backends. Whenever possible,
you should favor AFD, since it is a global service and has a point of presence (POP)
everywhere in the world.

84 Infrastructure Design

WAF policies can also be associated with AFD, and AFD encompasses static content
caching, like a CDN appliance. One thing to note with AFD is that you should pay
attention to its health probes. Since AFD is global, many of its POPs will run the health
checks against your backends, which can result in between 200 and 1,200 calls per minute.
Make sure that you configure the health probe correctly, so as to only return an empty
response with a 200 result code and to avoid extra bandwidth costs. AFD has multiple
routing methods: priority, latency, weighted, and session affinity, which enables many
scenarios for globally distributed assets and disaster recovery mitigation measures.

Azure Traffic Manager (ATM) is also a global service, which is mostly used for
geo-distributed workloads. Unlike AFD, ATM does not see the traffic going from the client
to the backend, because it is based on DNS routing. For pure HTTP workloads, AFD
should be preferred over ATM because it has some HTTP-friendly features, such as HTTP
acceleration. AFD is also an all-in-one product, with reverse proxy and WAF capabilities.

Whenever you deal with API architectures, you should use an API management solution.
Azure API Management (APIM) has recently joined the leader group of Gartner's Magic
Quadrant for API management solutions. A typical topology for controlling traffic to
APIs is to use a WAF in front of APIM and to use APIM's features to version and manage
proxy APIs by targeting backend services. APIM can also be used for global deployments,
and it has a built-in resilience mechanism to automatically fail over to available managed
gateway units.

A common approach consists of using AFD in front of APIM's public VIP and using
APIM policies to only accept the traffic coming from the AFD instance that has a unique
ID. APIM allows you to deploy self-hosted gateways that are hosted as containers
on-premises, in Azure or in another cloud. Both managed and self-hosted gateways are
policy enforcement points (PEPs), meaning that every request hitting the gateway must
satisfy the policy requirements, in order to be forwarded to the actual backend service.
A very common policy is the throttling policy, which is a very efficient way to prevent
abuse and DOS/DDOS attacks. APIM's policy engine is very rich and can even contain
C# expressions.

Controlling network traffic is very important; likewise, so is monitoring. So, let's now
explore monitoring.

Zooming in on monitoring
Figure 3.4 is the same as the one we had in Chapter 2, Solution Architecture. In this section,
we will explain a typical approach to monitoring Azure applications with native tools. The
usage of Splunk, or any other third party, is beyond the scope of the book:

Zooming in on monitoring 85

Figure 3.4 – Zooming in on monitoring

When an application is deployed to Azure, we must do the following:

• Monitor the application events. This can be achieved with Application Insights.
Note that very recently, Microsoft launched workspace-based Application Insights,
which in a nutshell couples Azure Application Insights and Log Analytics together.

• Monitor the Azure services, health. This can be achieved by redirecting diagnostic
logs to Log Analytics.

• Define alerts on standard metrics or specific diagnostic log events.

Firstly, it is important to distinguish between logs and metrics. Log data can be used
to perform root-cause analysis of a problem and/or to monitor the daily usage and to
better understand the overall platform health. Azure Monitor Metrics provides a way to
monitor specific service metrics and to define alerts when some thresholds are reached.
Azure has the following different types of log data:

• Activity logs: They are common to every Azure service. They allow you to monitor
the categories shown in the following figure:

Figure 3.5 – Activity log categories

86 Infrastructure Design

These logs are also interesting from a security perspective, as they keep track of who
does what against the resource.

• Diagnostic logs: They can be service-specific or end up in the shared
AzureDiagnostics log category. The following figure shows you an example of
diagnostic logs for Azure SQL:

Figure 3.6 – Azure SQL diagnostic logs
Meanwhile, AFD reports on the log categories in Figure 3.7:

Figure 3.7 – AFD log categories
As you can see, they are very different from one service to another. You should
always have a look at the specifics, in order to make sure you can control what you
want to control. Most services offer the possibility to redirect logs to one or multiple
targets, as illustrated in Figure 3.8:

Zooming in on monitoring 87

Figure 3.8 – Sending diagnostic logs to a target repository
This makes it possible to centralize most service logs in Log Analytics for analysis
and in Azure Storage for archiving. Event Hubs can be used to let third parties grab
log data.

Once the data is in Log Analytics, it is possible to perform advanced queries and even
to define alerts on query results. Figure 3.9 shows an example that uses Kusto query
language (KQL) to detect AFD's firewall security events:

Figure 3.9 – AFD firewall logs

88 Infrastructure Design

Figure 3.9 shows that some SQL injection attacks were detected by AFD. KQL can also be
used to render charts. The next figure shows you how to render charts:

Figure 3.10 – Rendering charts with KQL

Such charts can easily be pinned to Azure dashboards, and new alert rules can be defined
against KQL queries. When it comes to pure metrics, Azure Monitor Metrics is the easiest
way to keep track and to define alerts when a given threshold is reached by a service. For
example, Figure 3.11 shows you how to define an alert on AFD's backend latency:

Figure 3.11 – AFD backend latency

Zooming in on monitoring 89

This figure shows the definition of an alert that should fire whenever the average
backend latency is over 2,000 milliseconds over an aggregated period of 15 minutes. This
evaluation happens every 5 minutes. Such alerts are bound to one or more action groups,
which are entities that define who to notify and how to handle the event. Notifications
range from mere emails to SMS/voice messages. The associated actions can be hooked to
many different services and systems, as illustrated in the following figure:

Figure 3.12 – Action group action types

You can automate the alert handing, using any of the Azure services present in Figure
3.12. Webhooks are a way to reach out to any system, such as, for instance, Dynatrace,
which has an Azure integration module. ITSM is certainly a very interesting option, as
it allows you to create a ticket in your preferred ITSM tool, such as ServiceNow. If you
combine KQL with the pre-defined metrics and alert mechanisms of Azure, you have a
very powerful monitoring system. On top of that, you can always make use of Event Hubs
to let third-party tools gather all the log data. Monitoring Azure components using native
services is rather trivial, unlike our next topic: high availability and disaster recovery.

90 Infrastructure Design

Zooming in on high availability and disaster
recovery
First of all, let's review the difference between high availability and disaster recovery
and put that in the Azure context. A high availability (HA) solution is continuously
available for a desired amount of time. In Azure, most HA solutions are scoped to a single
geographical region.

Disaster recovery (DR) aims to recover from a severe incident, such as a fire (or flooding)
in the data center, an earthquake, or any other type of heavy damage. In Azure, an
example of a severe outage is the complete unavailability of an entire region, or of a service
within a region. DR-compliant systems often rely on multiple regions, which incurs extra
costs. Usually, a design that is DR-compliant is also HA.

Whether you design a solution for HA or DR depends on the expected recovery time
objective (RTO) and recovery point objective (RPO) defined by the business or
expected by your customers (if you provide the service). Figure 3.13 is a zoom-in on high
availability in Azure:

Figure 3.13 – Zoom-in on high availability

Figure 3.13 has two top-level groups:

• REDUNDANCY: Uses Availability Zones, geo-distribution, and/or a unit model

• SCALING: Uses VM scale sets, autoscaling plans, serverless, horizontal cluster
scaling, AKS autoscaling, and/or virtual nodes (ACI).

Scaling out (horizontal scaling) is a way to increase HA. Indeed, having multiple instances
of a service or virtual machine will ensure greater availability should one instance become
unhealthy. Azure virtual machine scale sets let you define a group of virtual machines
that can scale out or down, according to the demand. They are also used by AKS as a
way to scale the K8s cluster. Special care has to be taken with the services that run on the
virtual machines for which you are entirely responsible.

Zooming in on high availability and disaster recovery 91

Most PaaS services rely on autoscaling plans. In a nutshell, these plans let you define
some thresholds, typically at the memory and CPU level, to scale out or down the
underlying service. Regarding data stores, such as Azure SQL and Cosmos DB, you can
rely on autoscaling DTU/vCore or RU within defined boundaries, in order to prevent a
cost explosion.

In a non-production environment, you should use fixed DTU/vCore/RU to identity poor
query patterns, as early as possible, and to prevent bad (cost) surprises in production.
AKS relies on horizontal cluster scaling, based on virtual machine scale sets. Virtual
nodes can also come to the rescue to add extra power, when needed, and to respond faster
to a fast-growing demand.

REDUNDANCY is another way to increase HA. Azure Availability Zones are different
physical data center locations within the same Azure region. With Availability Zones, you
do not merely increase the number of instances of a service or machine, but they also span
multiple physical infrastructures, while still remaining within a single region.

In the past, Availability Zones were mostly used in IaaS with virtual machines, but they
have become more and more available for PaaS services as well. An example of this is
the recent general availability (06/2020) of Azure Storage GZRS (Geo-zone-redundant
storage). Geo distribution, or replication, is a way to achieve both HA and DR at the
same time. Most data services have geo-distribution capabilities, with multiple read or
read/write regions. Finally, there is what we call the unit model, which is a way to increase
the number of units a given PaaS or FaaS service has to run. For example, Azure API
Management gateways come with the unit concept, where you pay per unit. The same
thing applies to Stream Analytics jobs and other services.

Next is the disaster recovery piece, as illustrated in Figure 3.14:

Figure 3.14 – Zoom-in on disaster recovery

92 Infrastructure Design

Admittedly, Figure 3.14 is far from being comprehensive. There are so many Azure
services that an entire map on DR would probably not suffice. We simply wanted
to highlight some usual suspects, such as virtual machines, databases, HTTP-based
workloads, and messaging workloads. Azure Site Recovery is the most important tool
to ensure DR for virtual machines, between on-premises and the cloud and one or more
Azure data centers. Database engines rely on the geo-distribution that we have just
explained. Azure Service Bus, Event Hubs, and Event Grid only replicate metadata
(queues, topics, and subscriptions), not the message themselves. That is why a full
DR-compliant solution requires some client logic as well. The latter example illustrates
the complexity of designing a coherent end-to-end DR-compliant solution, because not
all services have equivalent DR features, while most solutions rely on a mix of services.
HTTP-based workloads are often deployed to multiple regions and appliances, such as
Front Door or Traffic Manager, which handle the routing and DR logic.

To go a bit further with DR, let's go through a real-world scenario and craft a
possible architecture:

Contoso wants to propose globally distributed APIs to their customers. They span three
continents: North America, Europe, and Asia. The SLA of their customers is very demanding,
as they want to be up and running 99.99% of the time. They want to optimize response times
and have multiple POPs so that those POPs that are the closest to customers handle the
requests. Given the SLA, the solution should survive a regional outage.

The next diagram shows a possible architecture to respond to these requirements:

Figure 3.15 – An active-active DR-compliant global API offering (diagram available on GitHub)

Zooming in on high availability and disaster recovery 93

On the left-hand side, there are end users or end user applications that call our APIs. AFD
is a global autoscaling service that has many POPs worldwide. Whenever possible, try to
use global services, as they are DR-compliant out of the box. In our design, Front Door
ensures the POP, as well as the layer 7 WAF, before customer traffic hits the APIs. Front
Door's backend pool is the global Azure API Management (APIM) gateway endpoint.

Only the APIM premium tier is multi-region-aware. Our design has one gateway unit
in Europe, one in the US, and one in Asia. APIM's global load balancer routes calls to its
closest gateway unit by default, so this is in line with our scenario. APIM is also able to
detect whether a gateway is healthy or not. In case a gateway (say Europe, for example) is
not healthy, then it will route the traffic to the other remaining gateways, hence the reason
why we take a single unit per region. Having multiple gateway units per region is also
possible, but it will drastically increase your costs.

We must write APIM failover policies to route the traffic to our backend services because
the global APIM load balancer is unaware of the actual backend health. These backends
are hosted on Azure App Service and run multiple instances (a minimum of 2). They
rely on autoscaling plans to handle peaks. Lastly, we use Cosmos DB with multiple write
regions, and we have activated Cosmos's automatic failover. Having multiple write regions
allows for zero downtime should a regional outage occur, since the system is already in
active-active mode. An alternative to APIM policies is to monitor the actual backend
health via AFD directly and let AFD handle failover concerns. While it is possible, it may
not be easier.

The top-right dotted rectangle (Figure 3.15) is our primary region, because only a single
premium instance of APIM is deployed to West Europe (WE). This means that if WE
goes down, everything will still be up and running, except APIM's control plane, which
will prevent any modification of the APIM instance, as long as the primary region is
not back up and running. This has no impact on the customer experience. Even if only
one Cosmos DB goes down, our .NET Core backend is smart enough to connect to the
remaining databases, thanks to the built-in features of the Cosmos DB SDK.

However, our architecture has some potential drawbacks and might not be suitable in
every situation:

• Its active-active geo-distributed database relies on eventual consistency. This means
that data retrieved by customers might not be the most recent. Indeed, by default, it
is not possible to enable strong consistency for regions that are separated by more
than 5,000 miles. This can be requested from Microsoft, but the impact on write
latency is huge.

94 Infrastructure Design

• We have 3 gateways, meaning ~7500 euros/month, just for APIM. We could have
self-hosted the gateways (~3 times cheaper) but then we would lose APIM's SLA for
the data plane, and we still need to foresee costs and HA to host the gateways.

Should you add other services to the mix (such as Service Bus, Event Grid, and Redis
Cache, to name a few), you will have to make sure to keep a consistent HA-DR story. In
complex architectures, you might have to plan for a degraded mode to keep costs and
complexity low. As a rule of thumb, a DR-compliant architecture costs about 2.5 times
more than a single region-scoped architecture. Why 2.5 and not 2? Simply because only
the premium tier of most PaaS services ships with DR features, while you can rely on
standard tiers (which are cheaper) when working with a single region.

In this section, we mostly addressed the RTO objective, not the RPO one, which can
partially be addressed by a proper backup and restore strategy, our next topic.

Zooming in on backup and restore
Backup and restore processes are also part of the broader disaster recovery picture.
However, you might end up with a corrupted database or accidental data deletion, even in
a non-disaster situation:

Figure 3.16 – Zoom-in on backup and restore

Zooming in on backup and restore 95

Figure 3.16 is far from being comprehensive, but it should give you the key aspects to
consider for a good backup and restore strategy. Figure 3.16 includes four top-level groups:

• NON-DB PAAS: This top-level group refers to managed services that are not related
to database engines.

• ON-PREMISES/CLOUD VM: This is applicable to both on-premises and cloud-
hosted virtual machines.

• STORAGE ACCOUNTS: AzCopy is usually used to push and pull data to/from
storage accounts.

• PAAS DB: This top-level group relates to database-specific managed services.

We first distinguish database services from other PaaS services, because the way to back
up and restore them is totally different. In the NON-DB PAAS group, we have stateless
and stateful services. An example of a stateless service is Azure Functions. With such
services, a modern way to restore them, if an issue occurs, is to redeploy them through
CI/CD, thanks to the IaC pipelines.

With stateful services (such as Azure API Management, where API consumers might have
been onboarded through the development portal), we also have to consider the inner
state of the service, which in this case are the subscribers. Redeploying through CI/CD
would not be okay, as we would lose the subscribers. With such services, you can rely on
the service-specific backup/restore capabilities. Since there are too many different ways
of doing this, we will not dive into it in this book – just keep in mind that service-specific
backup/restore strategies exist, and you need to look at them individually.

For virtual machines, you can virtually use any backup solution. Today's vendors have
connectors to Azure Blob Storage to store both on-premises and cloud virtual machine
disks. The native offering is Azure Backup, which can also be used for both on-premises
and cloud-based machines. Regarding storage accounts, you can explicitly take backups
with AzCopy, a command-line tool that lets you back up both blob and table storage.
It does not offer a true restore feature, because the way to restore blobs is simply to
copy the backed up ones to another storage account or the same storage account, by
overwriting them. It's interesting to note that storage accounts have a point-in-time
restore (PITR) feature that allows you to recover from data corruption or an accidental
deletion, although the latter can be mitigated by simply enabling the soft delete feature.
PITR is not enabled by default, so pay attention to enable it should your storage block
blobs be of high importance.

96 Infrastructure Design

The PAAS DB group shows the possibilities for Azure SQL and Cosmos DB. Azure SQL
takes automatic backups for 7 days by default. The PITR (point in time recovery) can be
between 1 and 35 days. It is also possible to take backups manually, using command-line
tools, and to restore them at any time. Cosmos DB is different, because the only way to
restore a database or container is to reach out to Microsoft support. There is, at the time of
writing, a private preview program to let you test PITR with Cosmos.

When designing a solution, make sure to verify that the expected RPO is in line with
Azure's capabilities.

Sometimes, some workloads go beyond typical resource needs, and require much more
power. HPC, our next topic, is a possible answer to this.

Zooming in on HPC
High-performance computing (HPC) is a pure infrastructure topic, because it boils
down to bringing an unusual amount of compute and memory to a given workload. In
general, HPC jobs are handled by dozens, hundreds, or even thousands of machines in
parallel. Figure 3.17 shows most of the current Azure HPC landscape:

Figure 3.17 – Zoom-in on HPC

AKS infrastructure 97

For memory-driven workloads, such as computational fluid dynamics (CFD), you may
rely on HB-series virtual machines, which are bandwidth-optimized. For FLOPS-driven
(short for floating-point operations per second) workloads, which require a fast and
optimized CPU, you can rely on the HC series. If you are unsure of whether your workload
is memory- or flops-driven, you might rely on Azure Cray, a supercomputer delivered
as a managed service. When it comes to job scheduling and underlying infrastructure
management, you can count on Azure Batch and Azure Cycle Cloud. Azure Batch is a
fully managed service that abstracts away the underlying infrastructure. Azure Cycle Cloud
is more interesting if you have to integrate with third-party HPC solutions. In terms of
storage, which plays a crucial role in HPC solutions, you can work with Azure NetApp
Files or Azure HPC Cache, or both at the same time. Azure NetApp Files brings massive
capabilities, in terms of I/O, while Azure HPC Cache is suitable in read-heavy scenarios.

We have now covered most of the Azure Infrastructure Map. The time has come to
explore a very in-demand service in more depth: AKS. It comes with its own practices and
infrastructure specificities.

AKS infrastructure
AKS is an entire world within the Azure universe. This is by no means a service like the
others. It is a partly managed service, as shown in Figure 3.18.

Figure 3.18 – AKS, a semi-managed service

98 Infrastructure Design

The control plane is the brain of AKS, and it is fully managed by Microsoft for free. Your
duty as an Azure infrastructure architect is to take care of the worker nodes, which are
plain virtual machines, connected to the brain via kubelet, the Kubernetes (K8s) primary
node agent. It runs on each node, and the agent registers the node with the API server
automatically. Rest assured, Azure comes with pre-defined node images, and you do not
have to build the worker nodes yourself, just manage them. Although self-hosting a K8s
cluster is even more demanding, you should not neglect the number of operations left
to the cloud consumer when working with AKS. Unlike a fully managed PaaS or FaaS
service, AKS requires special care and upfront analysis before usage.

AKS surely deserves an entire book for itself, so we will not be able to cover all the bits and
bytes, but we will try to highlight the most important aspects to consider when starting an
AKS journey in the following sections:

Figure 3.19 – The AKS Architecture Map

Important note
To see the AKS Architecture Map (Figure 3.19) in full size, you can download
the PDF here: https://github.com/PacktPublishing/The-
Azure-Cloud-Native-Architecture-Mapbook/blob/
master/Chapter03/maps/AKS%20Architecture.pdf.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter03/maps/AKS%20Architecture.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter03/maps/AKS%20Architecture.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter03/maps/AKS%20Architecture.pdf

AKS infrastructure 99

The AKS Architecture Map has six top-level groups:

• DEPLOYMENT: AKS supports all the possible deployment models to ensure zero
downtime and continuous delivery. Beyond deploying applications themselves, we
will explore segregation between assets in our Zooming in on deployment options
with AKS section.

• NETWORK: As for regular Azure infrastructure, networking is a very important
pillar. AKS has some specific characteristics that we will highlight in our Zooming in
on networking options with AKS section.

• MONITORING, STORAGE, SCALING, and MISCELLANEOUS: For the sake
of brevity, we will not detail each and every top-level group. We will simply leave
the zooming in maps for your reference, with a high-level description, and rather go
through some concrete AKS use cases, mostly around microservices architectures,
which is one of the top reasons to use AKS.

Let's start with AKS networking, probably the most challenging infrastructure topic.

Exploring networking options with AKS
As always, networking is the fundamental necessary evil for getting anything to work!
Let's explore this map further here:

Figure 3.20 – Zoom-in on AKS network options

100 Infrastructure Design

Figure 3.20 has six top-level groups:

• POD TO POD: Applicable to inter-pod network control.

• INGRESS: Applicable to cluster ingress controllers of AKS.

• EGRESS: Applicable to cluster egress. Pod egress is tackled in the POD TO
POD section.

• POLICIES: A way to enforce network policies within AKS.

• PLUGINS: Network plugins work very differently in AKS. They have a dramatic
impact on available features as well as on the method for allocating IP address spaces.

• API SERVER RESTRICTION: This section is about controlling who can talk to
the API server.

POD TO POD shows that the most important options that communicate between each
other are the K8s Service and a service mesh. A K8s Service is an out-of-the-box layer 4
component that supports TCP, UDP, and SCTP. This component behaves as an abstraction
layer between the different pods, because pod IP addresses are constantly subject to change.
Service meshes, which we will describe further later, are layer-7-aware and allow for smart
load balancing (based on actual backend latency), mTLS, and for understanding typical
layer 7 protocols, such as HTTP and gRPC. There are currently two market leaders: Istio
(https://istio.io/) and LinkerD (https://linkerd.io/).

Istio is an all-in-one product that allows you to deal with network policies, resilience
testing through fault injection, and advanced deployment techniques. It also offers greater
observability over the activity of the pods deployed within a cluster. Linkerd is a simpler,
lightweight service mesh that also offers mTLS, basic traffic split, and greater observability.
Compared to Istio, Linkerd has a smooth learning curve and is very fast.

Istio has a visible impact on performance, and it comes with a steep learning curve. Open
Service Mesh is still in its early days, but it aims at satisfying 100% of the Service Mesh
Interface (SMI), which makes it very open. This is clearly a product to keep an eye on
in the coming months. Service meshes still rely on K8s services, not to route the traffic
through the service, but rather to gather the pod IP addresses.

The next group from Figure 3.20 is EGRESS. Egress is opened by default, meaning that
AKS lets pods talk to the internet. There are a few ways to control this. First, you can add
Azure Firewall to the mix, in order to control cluster-level egress, which is called egress
lockdown. Second, you can use Istio's egress gateways to get pod-level egress control. In
the case of a global hub and spoke setup, you can have user-defined routes (UDRs) to
route the traffic to the Hub and to filter what is allowed and what's not from the Hub's
NVA (when using an NVA). Note that these techniques are not mutually exclusive.

https://istio.io/
https://linkerd.io/

AKS infrastructure 101

Let's now explore the INGRESS group. By default, services deployed into the cluster,
and that have a ClusterIP, are not accessible from outside the cluster. To expose them to
the external world, you need an ingress controller. Azure Application Gateway's AGIC
component can be used to do the job. AGIC became generally available by the fall of
2019. It is not yet as feature-rich as other players, such as Nginx and Traefik, but the value
proposal is to delegate the most operations to Microsoft's services. Nginx is globally used
and is known for its good performance. Traefik has been designed with the microservices
architecture in mind, which has a lot of moving parts and deployments. Traefik's
configuration is very dynamic and does not require downtime or refactoring.

Our next group is POLICIES. Network policies in K8s are layer 4 policies, which can be
seconded by service mesh layer 7 policies. K8s policies are not available when you're using
K8's default network plugin, called Kubenet. In such a situation, you can rely on Calico
to do the job. Project Calico is open source. Another option is to use Azure's default CNI
plugin with the default K8s policies, or with Calico, since it is also supported. Opting
for Calico also depends on other factors, such as also using Istio (for which Calico has
built-in support). Whatever option you choose, the purpose of network policies is to
control internal cluster traffic.

Let's now look at the API SERVER RESTRICTION group. As highlighted earlier, AKS
includes a control plane that ships with an API server. The API server handles all the
configuration options of a cluster. For connectivity, the API server is exposed to the
internet, by default. There are two options to mitigate this: using network ACLs through
IP restrictions, or using a fully private API server through the use of Azure Private Link.
This causes a bit of an operational overhead, which we'll describe later in this chapter.

The time has come to explore one of the most important groups: PLUGINS. The network
plugin you choose has a dramatic impact on capacity and scalability. When starting
your AKS journey, you might want to make your life easier and use Kubenet, hence the
reason why it is under the dev/lab/dedicated/test/standalone branch. It does not mean
that Kubenet cannot be used in production, but in that case, it should be combined with
Calico, to compensate for the lack of native network policy support. Upon creating your
cluster, you have to choose between Kubenet or advanced networking, which is also
known as Azure CNI. There are some significant differences between them, but the main
difference is how IP addresses are allocated to pods.

102 Infrastructure Design

When using Kubenet, IP addresses are only allocated to worker nodes, while pod IPs are
NATed. So, each virtual machine that is part of the cluster gets an IP address, and each
pod is proxied by the node's primary IP address. When working with Azure CNI, every
worker node and every pod gets a dedicated IP. Therefore, Azure CNI requires many more
IPs and a bigger subnet size. It is crucial to take this into account in your network design.

Figure 3.21 is a comparison table between Kubenet and Azure CNI on different aspects:

Figure 3.21 – Kubenet versus CNI

As you should have understood by now, if you opt for Azure CNI, you should carefully
consider both cluster scaling and upgrading, to make sure you do not get blocked over
time in production by a lack of available IP addresses in the AKS subnet. Microsoft
provides some guidance on that topic at the following URL: https://docs.
microsoft.com/azure/aks/configure-azure-cni.

At the time of writing, virtual Kubelets, which are called Azure Container Instances
(ACI) in Azure, are only possible with Azure Container Networking Interface (CNI).
You should always enable them whenever possible, because they are free of charge and do
not cause any more complexity. They are the serverless part of AKS, bringing you a serious
amount of extra power, as shown by Figure 3.22:

https://docs.microsoft.com/azure/aks/configure-azure-cni
https://docs.microsoft.com/azure/aks/configure-azure-cni

AKS infrastructure 103

Figure 3.22 – Output of the kubectl describe node virtual-node-aci-linux command

As you can see, virtual nodes represent solid extra capacity: 4 TB of memory, 10,000
CPUs, and up to 5,000 pods. So, even if you have not identified any use case for them yet,
make sure to enable them because they come at no extra cost and cannot be added post-
cluster creation. They should be useful sooner or later. Some typical use cases include (but
are not limited to) the following:

• Resource-intensive jobs.

• Message or event handlers, since they are often ephemeral, which goes well with
ACIs.

• CI/CD self-hosted ephemeral agents. These are particularly useful when running
integration tests.

Cloud-native platforms are all based on a scale-out story, meaning that you're multiplying
the number of instances. That usually works well, but sometimes you really need to
allocate more power to a single pod, and that is where virtual kubelets come in handy.
Instead of spinning up an entire worker node to scale out your pods, you may rely on
serverless ACIs, where you only pay for the time they run. Do you remember our solution
architecture use case, where we used ACIs instead of plain virtual machines (for cost-
saving reasons)? We are in the same situation here.

As with regular ACIs used outside K8s, there is a delay before an ACI gets started, so your
use case must tolerate it.

Note that the network plugin cannot be changed once the cluster has been provisioned, so
be sure to make the right choice from the start. Once the cluster network is under control,
we can start deploying assets to it. This is our next topic.

104 Infrastructure Design

Exploring deployment options with AKS
Deployment has become a very central topic recently. Today's business lines expect
frequent releases and no downtime. They also expect feature-level deployment and
advanced testing mechanisms, such as A/B testing. Figure 3.23 depicts the deployment
options in AKS:

Figure 3.23 – Zoom-in on deployment

Figure 3.23 has six top-level groups:

• CLUSTER: Applies to everything that helps deploy clusters.

• POD SCHEDULING: Applies to everything that impacts how pods are scheduled.

• SEGREGATION: Applies to everything that helps segregate assets.

• APPLICATIONS: Tools and techniques that help deploy applications.

• CONTAINER IMAGES: Every container relies on an image that needs to be stored
in a registry, with possible security scanning steps.

• BLUE/GREEN – A/B – CANARY: Various deployment models supported by AKS.

Before deploying any application, we need to deploy the cluster. The CLUSTER group
depicts different options. In terms of IaC, ARM templates can be used to deploy the
cluster. It is also possible to leverage the Azure CLI or the Azure portal to deploy the
cluster. Typically, your CI/CD pipelines would use ARM templates, but in an exploration
phase, you might simply use the portal.

AKS infrastructure 105

A fundamental question is how do we segregate assets? That is where our SEGREGATION
group comes in handy. If the asset is big enough, a dedicated cluster might be the
best option. Note that a minimal topology for production consists of having three
worker nodes.

If you share a cluster for multiple assets, you should use the K8s namespace resource type
to segregate them. The namespace is a logical boundary that is heavily used in K8s. Note
that even with a single asset, you might want to use the namespace to split the different
layers (frontend, backend, and data) if you work with a layered architecture. Whether you
use one or more clusters, you also have to think about your node pools. Each node pool is
a series of worker nodes that are based on a virtual machine size. For instance, you might
want to have a specialized node pool for databases, should you host them within the
cluster, and another one for services.

Node pools have a direct relation with the POD SCHEDULING group, since deployments
may influence where a pod should be scheduled by the K8s scheduler, by using taints
and tolerations. If you deploy a database, you might first taint your database nodes with
the taint database=true and then add tolerations to your database pods, to make sure
your pods are scheduled onto the database-specific node pool. The default behavior of the
K8s scheduler is to deploy the pod to the first available untainted node.

In AKS, every application requires at least a container image. That is what is covered by
our CONTAINER IMAGES group. AKS can work with any container registry but Azure
Container Registry (ACR) is probably the best default choice. When it comes to scanning
(for security) the container images, ACR relies on Security Center's Qualys integration.
An alternative is to use JFrog's container registry, which also includes image scanning.

Last but not least, we have the BLUE/GREEN – A/B – CANARY group. As explained
earlier, these deployment techniques ensure frequent deployments and low to zero
downtime. To leverage any of them, you can rely on Flagger and Istio. Linkerd also has a
traffic split feature, but it's not as rich as Flagger and Istio's versions.

As with any other systems, deployed assets, as well as AKS itself, must be monitored to
ensure a smooth user journey. Let's explore some of the AKS specifics when it comes
to monitoring.

106 Infrastructure Design

Monitoring AKS
As discussed earlier, for regular Azure services, monitoring is as important as developing
an application. AKS has some specific tools and services to ensure proper monitoring.
Figure 3.24 shows the most important and frequently used monitoring and health check
services for AKS:

Figure 3.24 – AKS monitoring

Azure Monitor can be used as a single pair of glasses to collect not only Azure logs, but
also AKS logs through its OMS agent daemonset, which runs on every worker node. Of
course, Azure Monitor can do this for one or more clusters. Prometheus (https://
prometheus.io/) is K8s' out-of-the-box monitoring solution. It is often used together
with Grafana (https://grafana.com/) to capture logs and to define dashboards and
alerts. Prometheus and Azure Monitor can be used together.

K8s is able to monitor containers, thanks to liveness and readiness probes. These will
cause the containers to be automatically restarted (by default), in cases in which they do
not respond to kubelet's GET HTTP requests (for HTTP workloads). This also allows
AKS to restart failed containers with an exponential retry mechanism. This capability is
part of the self-healing behavior proposed by container orchestrators. Self-healing goes
even further by making sure the actual state is in line with the desired state, defined in
the deployment manifest. From time to time, containers might need to store information
outside of a database. Let's see which storage options are at our disposal.

Exploring AKS storage options
Storage in AKS can be summarized in one acronym: CSI (container storage interface).
Figure 3.25 displays the different storage options:

https://prometheus.io/
https://prometheus.io/
https://grafana.com/

AKS infrastructure 107

Figure 3.25 – Storage options

Every storage provider can provide storage services through the implementation of CSI.
Most of the time, external persistent volumes are used to store data. We do not recommend
that you store information directly on the container's file system, because of the container
volatility. The volume is a way to abstract and store data in a persistent manner, but you
should carefully choose the right provider, to avoid performance issues. Configuration data
can be transmitted to assets through ConfigMaps, while sensitive data should always be
persisted in Azure Key Vault. This applies to non-AKS workloads as well.

The built-in K8s secret is not the most secure way to store sensitive information, as it
merely encodes data in base64. That said, secrets are RBAC-protected so not everyone
nor every asset can access them, and in Azure, AKS disks are encrypted by default using
Microsoft/customer-managed keys. In any case, Azure Key Vault, combined with Azure
Active Directory (AD) pod identity, should always be the preferred approach.

Now that you have a better idea of how to control the network, deploy and monitor assets,
and how to leverage the various storage providers, let's see how to scale your applications.

Scaling AKS
Scaling will be discussed further in the Reference architecture for microservices section.
However, Figure 3.26 shows you how to scale both the cluster and the pods. We have
already touched upon cluster scaling in the Zooming in on networking section:

Figure 3.26 – Scaling options for AKS

108 Infrastructure Design

Horizontal Pod Autoscaler (HPA) is K8's way to scale out pods. It is essentially based on
CPU/memory metrics. Metrics providers such as Keda and Prometheus can also feed HPAs
to scale pods based on custom metrics, and not only system ones. Virtual nodes translate
to ACIs in Azure and are very useful for bringing extra power to the cluster. Pods can scale
automatically, upon a declarative configuration in raw YAML files or any K8s packaging
tool, or by using the Kubectl command-line tool. Clusters also support autoscaling but
manual interventions using the Azure portal and the Azure CLI are also possible.

We have now looked at the most important AKS topics. Nevertheless, let's go through a
few practical aspects when getting started with AKS.

Exploring miscellaneous aspects
As stated earlier, we will not detail every top-level group of this scoped map, for the sake
of brevity. Some of the elements depicted in Figure 3.27 are discussed further in our
microservices use case:

Figure 3.27 – Miscellaneous aspects of AKS

It is interesting to note the DEV TOOLS group, which can help developers get started
with the tooling they need to begin developing. While Visual Studio and Visual
Studio Code come in handy, it is often not enough to resolve dependencies that a given
container might have toward others. It is possible, to a certain extent, to replicate an AKS
infrastructure to a local cluster, such as Minikube or Docker Desktop's embedded K8s,
when hosted on the developer machine, but Azure Dev Spaces or Bridge to Kubernetes
may be a better approach for larger applications.

AKS infrastructure 109

Local replication is a good fit, as long as the total number of containers and dependencies
can be handled by the local CPU and memory resources. The value proposal of Azure
Dev Spaces is to bridge the IDE to an actual shared AKS for development and testing
purposes, which eliminates the need for local replication. It's important to note, however,
that Azure Dev Spaces will be retired in October 2023, to the benefit of Bridge to K8s,
which aims to simplify the development experience. Unlike Azure Dev Spaces, Bridge to
K8s is 100% client-side and can be achieved using Visual Studio Code or Visual Studio.
So, any greenfield project should start with Bridge to K8s. We keep mentioning Azure Dev
Spaces because you might still be confronted with it in the future. Also, it is interesting to
note that AKS itself can be extended through the concept of custom resource definition
(CRD), should you sell a product or need extra customization for your corporate clusters.
Most of the other subgroups are partially discussed in our microservices use case, which
comes next. Let's first see why we might want to use AKS instead of native Azure services
for microservices architectures.

AKS and service meshes for microservices versus
Azure native services
Microservices have become so popular that it is important to understand why AKS is
probably the best service to run them in Azure. In a nutshell, the technical promises of
microservices architectures are as follows:

• To make a single service the deployment unit and to enable frequent and granular
deployments, while not directly impacting the other services.

• To make a single service the scaling unit, to benefit from granular scaling, and to
prevent the waste of compute resources.

• To easily segregate mission-critical services from less important ones.

• To have more resilient solutions, since every part is isolated. Unlike a monolith, not
everything will crash at the same time.

• To enable multiple teams to work together, at the same time, with different
technologies (polyglot).

110 Infrastructure Design

While all the preceding points could be achieved using Azure App Service and Azure
Functions, AKS makes it easier. Consider Figure 3.28, which shows what a microservices
architecture may look like:

Figure 3.28 – Microservices diagram

We see that many (there could be many more than this) services interact with each other
and exchange information through direct and indirect asynchronous calls (through a bus
for instance), or they react to events notified by Azure Event Grid. What you see here
is literally a service mesh. We briefly touched on service mesh products earlier. They
typically respond to the preceding requirements, since they offer service-level granularity
for whatever concern we might have.

They also ensure a complete overview and secure communication between services. As
highlighted earlier, service meshes are layer-7-aware. They know the difference between
HTTP/1.1, HTTP/2, and load balance requests accordingly. This might seem anecdotal,
but it is not. Many microservices architectures leverage gRPC, which in turn makes use of
HTTP/2. Usually, gRPC is the preferred protocol for performance reasons, as it prevents
the creation of unnecessary HTTP requests, while optimizing serialization.

AKS infrastructure 111

As the meshes grow, the extra milliseconds of latency per service call turn into seconds,
hence using gRPC or REST over HTTP/2 to mitigate this problem. HTTP/2 reduces the
network overhead through its multiplexing feature, which allows clients to reuse the same
connection across requests. While this is a great benefit, it is unknown by layer 4 load
balancers (including the K8s service component), which do not differentiate HTTP/1
from HTTP/2.

A possible side-effect is that if multiple instances of the same pod are available, an
existing client will keep talking to the same instance (should it even be the slowest one),
which is not totally aligned with the scale-out story of cloud-native platforms. Service
meshes come to the rescue by controlling the HTTP/2 multiplexing feature, according
to the actual latency of each available backend instance, which creates the extra HTTP/2
requests when needed, to leverage all the available backend instances. This alone could
almost justify the use of a service mesh tool.

Note that K8s alone already natively answers all the requirements of a microservices
architecture. A service mesh product will simply improve the overall architecture.

Let's review typical microservices requirements, with Azure App Service and functions
versus AKS:

• Service-level deployment: Even when sharing the same underlying App Service
plan, app services can be deployed independently, since each service has its own
.scm endpoint. Thanks to deployment slots, Azure App Service can handle canary
releases and blue/green deployments. Thanks to Azure App Configuration, it is also
possible to enable A/B testing through feature flags. AKS is also able to handle every
possible type of deployment.

• Service-level scaling: If we want to have full independence between services,
we should dedicate an App Service plan to each app service, because per-service
scaling is only valid for horizontal, not vertical scaling. While this is technically
feasible, it would quickly lead to higher costs since a standard plan is about 60€
(~71$) a month. In AKS, the pod resource type allows for both independent vertical
and horizontal scaling of the service by design, at no extra cost. Function apps
on the consumption tier could come to the rescue, but they suffer from cold-start
syndrome, so they cannot be used for every scenario. Function apps on prepaid
plans lead to the same considerations as App Service.

112 Infrastructure Design

• Easy segregation: With AKS, it is easy to bring special care to mission-critical
services. For instance, you can attach PodDisruptionBudgets to pods, protecting
against voluntary and involuntary disruptions. With App Service and Function
apps, all services are treated the same way. Nothing would prevent an operator from
restarting an app service by accident.

• Increased resilience: Here again, AKS has built-in auto-healing features that
keep monitoring at the desired state that you defined against the actual state. Any
deviation from the actual state is automatically corrected, providing the errors are
transient. App Service also has an auto-heal feature, but auto-healing is slower to
kick off speed-wise.

• To enable multiple teams to work together with different technologies: Since
Azure App Service supports both Linux and Windows containers, technology is
not an issue.

Azure App Service and Azure Functions compete quite well, but what they do not have
is support for real service mesh software, which helps in building even more secure
and resilient systems. Admittedly, service meshes are not always a must-have tool, but
they become necessary as your number of services grows, to ensure some coherence
and consistency across the entire mesh, which is almost impossible to ensure with a
combination of app services and functions. To conclude on this topic, Azure native
services will hardly sustain the scaling of a microservice architecture. The next section
walks you through a reference architecture for microservices.

AKS reference architecture for microservices – cluster
boundaries
Now that we have made a case about the reasons why AKS is a better fit to run
microservices architectures than regular Azure App Service and Functions, let's take a
closer look at a possible reference architecture. This will happen in two steps: we first focus
on the cluster boundaries, then on the cluster internals:

AKS infrastructure 113

Figure 3.29 – AKS for microservices – cluster boundaries (diagram available on GitHub)

Figure 3.29 maximizes the use of native Azure services. First, we separate the system
node pool and the worker node pools. The reason why we split them is to facilitate cluster
operations. Here is the rationale behind each choice:

• Splitting node pools: You may need multiple node pools for scaling reasons
(different worker node sizes), but also when working with a mix of concerns. Say,
for example, that you have custom AI models, which are served by some of your
services. In this case, you might want to train the AI models with specialized node
types, while regular services could be scheduled on any node type. You can achieve
this using K8 node taints and tolerations.

114 Infrastructure Design

• Azure Firewall: We leverage Azure Firewall for egress lockdown, which we
depicted earlier.

• Azure Application Gateway: We use Azure Application Gateway as the inbound
appliance. It proxies our APIM gateway and is the bridge between the internet and
our internal ingress controller. At the time of writing, AFD is only able to connect
to publicly accessible backend pools, hence the reason we chose Application
Gateway here. Should Front Door be able to connect to private endpoints, we would
use it instead of Application Gateway. The main reason to favor Front Door over
Application Gateway is its global scale and built-in disaster recovery features.

• Azure API Management: The API Management instance is used to expose part of
our microservices to the external world. Note that the premium pricing tier can also
be fully internal from a connectivity standpoint. We use the Microsoft managed
gateway, but there could be good reasons to self-host it in the cluster itself, such as
attaching it to a service mesh or combining it with Dapr. Note that since a single
instance can have multiple gateways, you might use the Microsoft hosted gateway,
plus one or more self-hosted gateways.

• Azure Monitor: Although Prometheus is the default monitoring system in the K8s
world, it is important to use Azure Monitor, to have a single pair of glasses when
looking at the broader picture. Using both Monitor and Prometheus is not mutually
exclusive (you can use both), but that comes at higher costs. You might want to filter
out what the OMS agent should collect. You can take a closer look at https://
docs.microsoft.com/azure/azure-monitor/insights/container-
insights-agent-config to read more about the OMS agent capabilities.

• Private link and private cluster: Depending on your company's DNA, you might
rely on a public, private, or restricted API server. The advantage of using the
public API server is that you can interact from anywhere. By interacting we mean
running kubectl commands, having CI/CD pipelines talking to the cluster, and so
on. A traditional security architect would actually see this as a disadvantage. You
have two other options: IP restrictions, which are just network ACLs that prevent
non-whitelisted IP ranges from interacting with the cluster, and a fully private API
server. The consequence of such an approach is that CI/CD pipelines may not rely
on Microsoft hosted agents anymore. You have to self-host your agents so that they
are part of a network perimeter that you control. Note that with network ACLs, you
could still use Microsoft-hosted agents by the end of 2020, providing you whitelist
the global IP range of the Azure DevOps service tag. This also means that any other
Azure DevOps instance would be able to connect to your API server. We use the
word connect, not authenticate.

https://docs.microsoft.com/azure/azure-monitor/insights/container-insights-agent-config
https://docs.microsoft.com/azure/azure-monitor/insights/container-insights-agent-config
https://docs.microsoft.com/azure/azure-monitor/insights/container-insights-agent-config

AKS infrastructure 115

With private clusters, you also have to rely on Azure private DNS zones to resolve
the private endpoint. Note that regardless of the API server connectivity choice,
the cluster itself may leverage private-link-enabled data stores to make sure data-
related traffic only passes through private connections. There are, however, some
major limitations when it comes to EDA building blocks, such as Azure Service
Bus. Think twice before enabling private links for these services. You can find more
information about these limitations at https://docs.microsoft.com/
azure/service-bus-messaging/private-link-service.

• Policy admission controller: A way to enforce some basic security guidelines on
AKS is to use Azure Policy, which extends Gatekeeper v3, an admission controller
webhook for Open Policy Agent (OPA). Azure Policy ships by default with some
built-in initiatives as shown in Figure 3.30:

Figure 3.30 – K8s initiatives
As an example, you may end up with the policies shown in Figure 3.31:

Figure 3.31 – Sample policies for K8s
This gives peace of mind to your security department, while enabling a
shift-left mindset.

https://docs.microsoft.com/azure/service-bus-messaging/private-link-service
https://docs.microsoft.com/azure/service-bus-messaging/private-link-service

116 Infrastructure Design

• Azure Container Registry: Any container platform requires a container registry.
Here, again, there are many different registry providers available. At the time of
writing, private-link-enabled registries cannot leverage Azure Security Center's
image vulnerability scanning, which is yet another consequence of using private
links. Should you rely on another vendor, make sure to assess the potential extra
network latency you might encounter at image pull time, since the registry will not
be part of the Azure backbone.

Now that we have seen some important considerations about the cluster boundaries, let's
explore the cluster internals.

AKS reference architecture for microservices – cluster
internals
With K8s, what happens outside the cluster may be less important than what happens
inside of the cluster. Here, we will explain the rationale behind each technology choice
we made in Figure 3.32, which assumes that we are hosting multiple assets in a shared
AKS cluster:

Figure 3.32 – Cluster-scoped view

AKS infrastructure 117

Let's now review, one by one, each technology mentioned in the diagram:

• Dapr is still a young framework, but it has enormous potential. As we saw in
Chapter 2, Solution Architecture, Dapr has many connectors to both Microsoft
and non-Microsoft event/data stores. Dapr makes it very easy to decouple the
application code from the stores it is talking to. You do not need to rely on specific
product/vendor SDKs. Do not be confused by daprd, mentioned in Figure 3.32 – it
is not misspelled. Daprd is Dapr's sidecar container, which acts as a network proxy
for inbound and outbound connections made by your application.

• We have a service mesh for all the reasons explained before (mTLS, better
observability, smarter load balancing, and so on). We opted for Linkerd because
it is very lightweight and does not incur a big learning curve. Feel free to
use another product, should you have specific needs that are not covered by
Linkerd. The important thing here is that a service mesh is required in a true
microservices architecture.

• We opted for KEDA, to ensure a nice pod/job-level scale-out story. Remember
that KEDA is also vendor-agnostic and facilitates interactions with both Azure and
non-Azure stores.

• Depending on the cluster networking option (Kubenet or Azure CNI), you might
end up with K8s policies, or you might have to use a product, such as Calico, to
control network traffic (layer 4) from and to the pods. Calico can also be used
with Azure CNI. The goal here is to control the communication between the
different bounded contexts, which by default is entirely opened in AKS. This is
not AKS-specific; it is just how K8s works. In Figure 3.29, we opted for Azure CNI
because we want to be able to leverage virtual kubelets through ACIs.

• We opted for the Traefik ingress controller because it is one of the most flexible
and dynamically configurable products. Other options could have been Nginx or
even Azure Application Gateway Ingress Controller (Azure AGIC), which is
currently not at the level of its competitors (feature-wise). However, keep in mind
that the cloud is a moving target. Make sure to review AGIC regularly. The benefit
of using AGIC over all the others is the delegation of the control plane hosting to
the cloud provider.

• We made sure you can enable Azure pod identities, in order to leverage managed
identities from within AKS, and to interact with Azure services that support Azure
AD authentication.

118 Infrastructure Design

• On the right-hand side of Figure 3.32, you can find some self-hosted products. You
should first consider using Azure services instead of self-hosted services. Self-
hosting means being fully responsible for high availability, backup/restore, disaster
recovery, and so on. Plus, it usually requires worker nodes with a higher memory/
CPU profile. For instance, the default MongoDB resource request is 4.5 GB of
memory, up to 6 GB, which is already quite a lot for a single container. On the other
hand, sometimes self-hosting a component comes with extra benefits. For instance,
it is possible to self-host an APIM gateway inside AKS, inject it with the service
mesh, and even inject Dapr's daprd sidecar, to leverage Dapr-specific APIM policies.

We hope that this two-step architecture approach helped you grasp the important aspects
of a microservice architecture, and beyond, of an AKS-based platform. Let's summarize
this chapter and see what comes next.

Summary
In this chapter, we did a vertical exploration of infrastructure practice in Azure. We
covered several topics, such as networking, monitoring, backup and restore, high
availability, and disaster recovery for both Azure itself and AKS. We made it clear that
AKS is a special service that comes with its own practices and ecosystem. As an Azure
infrastructure architect, you should pay special attention to AKS, whenever it lands on
your plate. Our message here is this: yes, use AKS – but do not overlook its complexity
and particularities.

In this chapter, we also explored two concrete use cases. The first one demonstrated
how challenging (and costly) it can be to have a consistent and coherent disaster
recovery strategy for a global API deployment. The second one was about using AKS for
microservices. We explained why we think that AKS is more suitable than pure Azure-
native services for large microservices implementations. We concluded with a reference
architecture for microservices, based on AKS. You should now be better armed to tackle
most Azure and AKS infrastructure topics and respond to architecture trade-offs, which
are an integral part of an Azure infrastructure architect's job.

Chapter 4, Infrastructure Deployment, will be more hands-on as we will concretely create
infrastructure as code templates and deploy them through various channels.

4
Infrastructure

Deployment
In Chapter 3, Infrastructure Design, we had a 360-degree view of the Azure and AKS
infrastructure, but we have not yet seen how to get infrastructure components provisioned
in Azure. This chapter focuses on one of the major enablers of the cloud, namely,
Infrastructure as Code (IaC). More specifically, we will cover the following topics:

• Introducing Continuous Integration and Continuous Deployment (CI/CD)

• The Azure deployment map

• Getting started with the Azure CLI, PowerShell, and Azure Cloud Shell

• Diving into ARM templates

• Getting started with Azure Bicep

• Getting started with Terraform

• Zooming in on a reference architecture with Azure DevOps

By the end of this chapter, we expect you to be acquainted with IaC concepts and
technologies and you should be able to make the right choices for your own organization
and your customers.

120 Infrastructure Deployment

Technical requirements
If you want to practice the explanations provided in this chapter, you will need the
following:

• An Azure subscription: To create your free Azure account, follow the steps
explained at https://azure.microsoft.com/free/.

• The Azure CLI, PowerShell, and/or Azure Cloud Shell: If you want to practice
them all, you need access to all three. Otherwise, you can just pick your preferred
choice. Azure Cloud Shell is the easiest option because you only need a browser to
use it.

• An Azure DevOps organization: To create an organization, follow the
steps explained at https://docs.microsoft.com/azure/devops/
organizations/accounts/create-organization.

• Microsoft Visio: You will need this to open the diagrams, or use the Visio
viewer available at https://www.microsoft.com/download/details.
aspx?id=51188.

All the code samples and diagrams are available at https://github.com/
PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/
tree/master/Chapter04.

Let's now get more familiar with the CI/CD concepts.

The CiA videos for this book can be viewed at: http://bit.ly/3pp9vIH

Introducing Continuous Integration and
Continuous Deployment (CI/CD)
Before diving into CI/CD, let's first step back and reflect on what DevOps means. In most
large organizations, the IT department is still divided into siloes. The most common ones
are the developers, on the one hand, and the infrastructure teams on the other. You might
as well have a separate security team and some middle ground bodies, overseen by
a governance body and an enterprise architecture practice. The purpose of DevOps is
to act as a bridge between the teams and to break the silo mentality. DevOps is part of
a broader digital transformation program that may take years to achieve. The whole point
behind digital transformation and DevOps is to gain extra agility and efficiency. However,
that's easier said than done!

https://azure.microsoft.com/free/
https://docs.microsoft.com/azure/devops/organizations/accounts/create-organization
https://docs.microsoft.com/azure/devops/organizations/accounts/create-organization
https://www.microsoft.com/download/details.aspx?id=51188
https://www.microsoft.com/download/details.aspx?id=51188
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter04
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter04
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter04
http://bit.ly/3pp9vIH

Introducing Continuous Integration and Continuous Deployment (CI/CD) 121

While the theory is promising, the reality often tends to prove otherwise: resistance of the
different teams, misunderstandings on the part of management, a lack of proper skills,
people who are out of their comfort zone, a what's in it for me attitude, and so on. Ideally,
the DevOps practice should be accompanied by a real change-management program. We
already discussed the strategic aspects in Chapter 1, Getting Started as an Azure Architect.

Back on topic, CI/CD is a practice that is part of a DevOps toolchain. Although CI/CD
systems existed before the term DevOps appeared, they were mostly used to manage the
application source code life cycle, code build, and code releases. Infrastructure was added
to the mix, thanks to the native capabilities of the cloud, and that is a game changer! Let's
first explore the CI/CD process.

Introducing the CI/CD process
Today, we dare to say that there is no real DevOps practice without CI/CD pushed to
its full extent. In other words, one cannot happen without the other. Figure 4.1 shows
a simplified view of the CI/CD process:

Figure 4.1 – A simplified view of the application CI/CD process

122 Infrastructure Deployment

When a developer commits a code change to the code repository, a CI build is triggered.
The purpose of this build is to make sure that the change made by the developer does not
break the build process. Another important aspect of having a centralized build process
is to make sure that all the code dependencies are resolved. Following a successful build,
a CD is triggered and the code is deployed to Azure. For instance, it could be deployed to
Azure App Service. Let's now see how infrastructure can be added to the mix.

Introducing the IaC CI/CD process
The infrastructure engineer or architect inside of you might think that the aforementioned
process is a developer thing. If this came to your mind, then we're sorry to say it, but you
might be a little old school. Make no mistake, the same principles apply to IaC. Consider
Figure 4.2 and compare it closely to Figure 4.1:

Figure 4.2 – A simplified view of the IaC CI/CD process

Introducing Continuous Integration and Continuous Deployment (CI/CD) 123

There is not much difference between both flows. Of course, just like an application
has some source code, so do the infrastructure components. The build part is optional,
depending on how you organize your pipelines. As we will see throughout this chapter,
the IaC bits are all declarative. A pure IaC template does not need to be compiled, but
sometimes it can be packaged or translated into something else to prepare the release. In
such a case, the IaC resources will be part of the build artifacts. Whatever you do, you also
have to manage pure infrastructure pipelines, and then link them in one way or another to
the application pipelines.

The whole point of CI/CD is to automate the entire process, from the developer/
infrastructure engineer change, up to the actual object in the target environment.
Automation brings you some substantial benefits, including the following:

• Speed of deployment.

• Seamless deployment across environments.

• Standardization of the used services.

• Reliability, since you reduce as many manual steps as possible, which can be error
prone.

• Possible disaster recovery mitigation measures. If your level of industrialization is
high, it is perfectly sensible to consider redeploying all or part of a solution, in case
of a disaster, to another Azure region.

• Continuous releases.

• Going beyond the traditional DTAP (development – test – acceptance –
production) cycle and quickly spinning up ephemeral environments.

• Better collaboration and control over the assets. You might want to enforce peer
reviews and/or approvals prior to releasing anything.

• Improved quality and security, since most tools support quality gates.

• Improved testability.

The list is probably much longer than this! Of course, setting up the factory foundations
takes time. In the beginning, setting up a CI/CD pipeline is often perceived as a loss
of time, or as an activity that slows down the overall process, and that is correct to
some extent. You only realize the aforementioned benefits once you start reusing these
infrastructure artifacts across your projects.

124 Infrastructure Deployment

The tools, such as Azure DevOps, go way beyond mere technical aspects, as they also allow all
stakeholders (functional and technical people) to work together in a consistent and coherent
way. Proper tooling and use of that tooling is key to succeeding in your DevOps journey. Let's
now take a closer look at our map and analyze the various deployment options.

The Azure deployment map
Unlike the other topics, the Azure deployment map is rather small. We will first elaborate
on its different top-level groups, but this time we will be a little more hands-on with a few
of our topics. We will compare the different options at our disposal, and then we will show
you a real-world example of an advanced IaC implementation with Azure DevOps. We
lightly touched on your deployment options in Chapter 2, Solution Architecture. Figure 4.3
shows a more elaborate view of the Azure deployment landscape:

Figure 4.3 – The Azure deployment map

Figure 4.3 has seven top-level groups:

• DSC (Desired State Control)

• PAAS AND FAAS, which largely encompasses both vendor-neutral and
native technologies

• COMMAND LINE

• DEVOPS & PIPELINES

The Azure deployment map 125

• CAAS

• VENDOR NEUTRAL refers to deployment tools and techniques that can be
used with other platforms than Azure

• NATIVE refers to deployment tools and techniques that can only be used
with Azure

DSC is a way to maintain a system aligned with predefined standards. Natively, only
Azure Automation can be used to enforce DSC against virtual machines. There are
numerous third parties that also support DSC, albeit with virtual machines. They all
work with virtual machines in any cloud and on-premises, since the only prerequisite is
to let the DSC agent contact the control plane, which, in the case of Azure, is reachable
at https://<workspaceId>.agentsvc.azure-automation.net. One
of the biggest advantages of using Azure Automation DSC is to delegate the control
plane management to Microsoft, meaning the desired configuration persistence and
orchestration. Whether you manage 10, 100, or thousands of virtual machines, the service
will scale automatically for you.

For PaaS and FaaS, we can rely on Azure ARM templates, Terraform, and Azure Bicep.
We will get into the nitty-gritty of this later, but we can already say a few things. ARM
templates are Azure's native way to provision infrastructure components. Azure Bicep is
the next generation of ARM templates. It is still in its early days, but the goal of Bicep is to
simplify the ARM story. You will see later that it can quickly become complex.

Finally, Terraform is another usual suspect. It is vendor neutral. It works with different
providers, and Azure is one of them. Most people find Terraform easier than ARM
templates, hence the reason Bicep was born. However, Terraform comes with a major
drawback: it is often lying behind ARM templates when new services are released in Azure.
ARM templates, Bicep, and Terraform all share the fact that they are based on a declarative
approach. We will explore these declarative models further in the coming sections.

Unlike a declarative infrastructure, we can always count on command-line tools, such
as the Azure CLI, PowerShell, and Azure Cloud Shell. PowerShell is well-known, and
it has been used by system engineers for many years. It used to be the only imperative
approach to provision Azure services. The Azure CLI came later, with the ambition to be
cross-platform, from the ground up. Nowadays, the Azure CLI should be preferred over
PowerShell because Microsoft invests more in the Azure CLI than PowerShell for Azure.
PowerShell is indeed a more generic tool, while the Azure CLI is dedicated to Azure.

https://<workspaceId>.agentsvc.azure-automation.net

126 Infrastructure Deployment

Azure Cloud Shell is available from within Azure portal, and it can be used with both
the Azure CLI and PowerShell. The benefit of using Azure portal is that you only need
a browser on your machine to get started. Both the Azure CLI and PowerShell require the
command-line tools to be installed on the engineer's machine. Of course, these client tools
can also be used from within the CI/CD pipelines. ARM templates do not cover 100%
of the Azure resources, which leads us to complement a declarative approach with an
imperative one when needed.

In the previous section, we introduced the concept of DevOps and CI/CD pipelines, but we
have not discussed the tools yet. There are a myriad of tools available. The usual suspects
are Azure DevOps, Jenkins, Jira, Bitbucket, BuildMaster, and GitHub. While all these tools
can be used to provision Azure resources, we can say from experience that Azure DevOps
is probably the best fit. First, Azure DevOps is an all-in-one product. Second, everything
is handled by Azure DevOps: the business requirements, source code branching and
versioning, advanced build, and release pipelines. All are provided, with pre-defined
Azure-related components. On top of all that, the Azure DevOps marketplace counts
hundreds, if not thousands, of extensions. But make no mistake, despite its name, Azure
DevOps is not only for Azure. You can use the tool to provision to any cloud and even to
on-premises environments. Azure DevOps simply has a tighter integration with Azure.
Some organizations have a mix of CI/CD tools (Jenkins is almost everywhere), and the
good news is that Azure DevOps and Jenkins can work together, so as to let Jenkins build
the code and Azure DevOps release it. Jenkins is used in many companies and they
often want to keep using it to build all their applications (Azure or not), but use Azure
DevOps for the release part, because Azure DevOps has more built-in actionable tasks
that help deployment to Azure. Toward the end of this chapter, in the Zooming in on
a reference architecture with Azure DevOps section, we will see an end-to-end, real-world
implementation of IaC with Azure DevOps.

Lastly, in our CaaS top-level group, we find Helm and raw YAML files for Kubernetes.
YAML is simply a generic markup language that has become some sort of JSON superset.
The Kubernetes API server understands YAML configurations natively. Helm helps you
package and manage Kubernetes applications. ACIs can be provisioned with YAML, ARM
templates, and Terraform. Of course, any of the client tools we have just described can
be used to deal with CaaS. We must add the Docker CLI and Kubectl to the mix, to deal
with Docker and Kubernetes, respectively. In the next section, we will get more familiar
with the client tools.

Getting started with the Azure CLI, PowerShell, and Azure Cloud Shell 127

Getting started with the Azure CLI,
PowerShell, and Azure Cloud Shell
In this section, we will give you a glimpse of the Azure CLI and PowerShell from within
Azure Cloud Shell. Our goal is not to make you become a scripting rock star, but to
just make you familiar with the two approaches. Of course, client tools may be used to
provision resources, but they can also interact with Azure in general. Even if you provision
everything through CI/CD pipelines, with ARM templates or Terraform, you will still
need to retrieve information about the deployed resources. Therefore, we will first focus
on getting Azure insights with the client tools in our next section.

Playing with the Azure CLI from within Azure
Cloud Shell
As stated before, the Azure CLI should be your default choice when interacting
with Azure. If you want to install the Azure CLI locally on your machine, follow the
instructions given at https://docs.microsoft.com/cli/azure/install-
azure-cli. For the sake of simplicity, we will use the Azure CLI from within Azure
Cloud Shell, since our goal is just to make you familiar with the Azure CLI, and not to
make you write complex scripts. To get started with Azure Cloud Shell, visit https://
portal.azure.com/. Once in the portal, you will find the Azure Cloud Shell icon, as
shown on the right-hand side of Figure 4.4:

Figure 4.4 – Starting Azure Cloud Shell

Click on the icon. Note that you can access Azure Cloud Shell directly via https://
shell.azure.com. The first time you use Azure Cloud Shell, it will prompt you to
create a storage account for your user. Just accept all the prompts.

Once launched, you can type the following:

az version

https://docs.microsoft.com/cli/azure/install-azure-cli
https://docs.microsoft.com/cli/azure/install-azure-cli
https://portal.azure.com/
https://portal.azure.com/
https://shell.azure.com
https://shell.azure.com

128 Infrastructure Deployment

This will show you the current version of the Azure CLI in Azure Cloud Shell:

Figure 4.5 – The az version command in Azure Cloud Shell

As you can see in Figure 4.5, some extensions are preloaded. You might have noticed that
PowerShell is launched by Azure Cloud Shell. You can switch to Bash if you prefer, but
this will make no difference for the Azure CLI itself.

The anatomy of an az CLI command is as follows:

az <command group> <parameters> <arguments>

For instance, let's say you entered the following:

az storage account list

This will return all the storage accounts of the current subscription. The preceding
command is only a command chain that targets a resource type (storage accounts),
but not a resource in particular. To scope it to a specific resource, you can run the
following command:

az storage account show --name packt --resource-group packtrg

Here, we want to view our storage account named packt, which is in the packtrg
resource group.

So far, so good. We can go a little further and extract specific information from that
storage account. Let's get its keys, using the following command:

az storage account keys list --account-name packt --resource-
group packtrg

Getting started with the Azure CLI, PowerShell, and Azure Cloud Shell 129

Note the inconsistency between the previous command and this one. The –name flag got
transformed into –account-name. The depth of the command chain really depends
on the resources that you work with. Every Azure CLI command supports the following
general flags:

• --help: To get extra help and examples of use

• --output: To tell the Azure CLI how the output should be rendered

• --query: To do advanced queries against resources, using the JMESPath syntax

• --verbose: To get the most details regarding a given command execution

• --debug: To get even more details regarding a given command execution

The Azure CLI is quite straightforward to learn. The only slightly more complex flag is the
–query flag. Let's start with the following simple query:

az storage account list --query [].[name,sku.name]

The preceding query returns an array of storage accounts and sku.name, as shown in
Figure 4.6:

Figure 4.6 – A list of storage account names and SKU

130 Infrastructure Deployment

You may have noticed the composed construct sku.name, which enables you to extract
a single property of a sub-object of the storage account. If you are unsure about the names
and properties to use, then you can always first check the structure of a resource, in this
case, a storage account. See the following command:

az storage account show --name packt --resource-group packtrg

Figure 4.7 shows a truncated response:

Figure 4.7 – A storage account truncated structure

With the output of Figure 4.7, we can see that storage accounts have an encryption
property that is a complex object, but we can easily infer a query argument from the
preceding screenshot by identifying the path of a given property. For instance, if we want
to view all storage accounts and whether the blob service is enabled or not, we can run the
following command:

az storage account list --query [].[name,encryption.services.
blob.enabled]

Getting started with the Azure CLI, PowerShell, and Azure Cloud Shell 131

We get the following response:

Figure 4.8 – The storage account names and blob service status

However, the –query flag is not only about selecting properties; it is also about filtering.
For instance, the following command returns all the storage accounts that have either
a blob or file service enabled:

az storage account list --query "[?encryption.
services.blob.enabled || encryption.services.file.
enabled].{Name:name,File:encryption.services.file.
enabled,Blob:encryption.services.blob.enabled}"

So far, we only had empty brackets, []. This is the placeholder to specify any query.
The second part is about specifying the properties to be shown. The Azure CLI
supports logical operators, such as AND (&&), OR (||), and NOT (!), as well as typical
comparison operators, such as <, >, and <=. For complete information regarding the
JMESPath language, you can visit their website at https://jmespath.org/.

Let's now perform similar manipulations with PowerShell instead of the Azure CLI.

https://jmespath.org/

132 Infrastructure Deployment

Using PowerShell from within Azure Cloud Shell
The good news with Azure Cloud Shell is that you can work seamlessly with PowerShell
and the Azure CLI. You might already be familiar with PowerShell, as it is commonly used
for non-Azure-related tasks. The Azure PowerShell cmdlets were available long before the
arrival of the Azure CLI. That is why you will still see a lot of Azure-related PowerShell
scripts in the coming years. As with the Azure CLI, you can simply launch a new Cloud
Shell window, which defaults to PowerShell, as illustrated by Figure 4.9:

Figure 4.9 – Azure Cloud Shell defaults to PowerShell

The first thing to note is that there are many PowerShell modules for Azure. The latest
cmdlets to use come from the PowerShell Az module. They supersede the former
PowerShell AzureRM module, although probably millions of scripts are still running
AzureRM in production today. Since we strive to look to the future, we will only focus on
PowerShell Az. To see which PowerShell version Azure Cloud Shell is currently running,
you can type the following command:

Get-Host | Select-Object Version

That should return at least version 7.0.3:

Figure 4.10 – Getting Azure Cloud Shell's current PowerShell version

The anatomy of a PowerShell command is as follows:

<command> <optional parameters> <optional pipes>

Getting started with the Azure CLI, PowerShell, and Azure Cloud Shell 133

PowerShell makes intensive use of the pipeline. In other words, it is easy to pass the output
of a first command to the input of the second, and so on. Unlike the Azure CLI, which
is specifically designed for Azure, PowerShell includes many more commands. To see
the commands from the Az module, you can either run Get-Command with all sorts of
wildcards, or use the following command to list the modules available:

Get-Module Az*|select Name

Figure 4.11 shows a truncated list of Az modules:

Figure 4.11 – A truncated list of Az modules

You can refine the list of available cmdlets by scoping to a specific Azure resource type.
For example, to get the list of Azure Storage-related commands, use the following
command:

Get-Command -Module Az.Storage

134 Infrastructure Deployment

Now that you know the basics regarding Azure PowerShell, let's directly jump to a more
advanced command, for the sake of brevity. If, like before, we want to list all the storage
accounts that have the blob or file service enabled, we can do it in the following way:

Get-AzStorageAccount|where {$_.encryption.services.blob.
enabled -eq $true || $_.encryption.services.file.enabled -eq
$true}|select StorageAccountName

This is rather straightforward.

Should you use the Azure CLI or PowerShell? That's the question, but they are not
mutually exclusive, as we will see in our next section.

Combining PowerShell and the Azure CLI from within
Azure Cloud Shell
You should use the Azure CLI or Azure PowerShell. However, you can also combine
pure PowerShell with the Azure CLI. For instance, to augment what we have done in the
preceding two sections, you can combine the Azure CLI and PowerShell statements into
a single command:

az storage account list|ConvertFrom-Json|where-object {$_.
encryption.services.blob.enabled -eq $true}|select name

This returns storage accounts that have the blob service enabled. See Figure 4.12:

Figure 4.12 – Combining both the Azure CLI and PowerShell into a single command

Azure Cloud Shell also offers a Bash execution environment, instead of PowerShell. So,
you can also combine pure Bash commands with the Azure CLI. Let's now take a step
back and review the higher-level considerations.

Understanding the one that rules them all 135

Understanding the one that rules them all
Before jumping into our declarative deployment options, it is important to first step back
and understand what is the single endpoint that rules everything.

No matter which tool or language you choose, they will ultimately all talk to the same
Azure API, namely, the Azure Resource Manager (ARM) endpoint. The commercial
endpoint is https://management.azure.com/. Any call to this endpoint requires
the caller to provide a valid access token, retrieved from Azure Active Directory.
Remember, in our Understanding the ARM template deployment scopes section, we
discussed the least privilege approach and the empowerment of the deployment tools.
That is what this access token will be validated against, for any interaction with the
ARM API.

Terraform, Azure Bicep, native ARM templates, and imperative client tools all talk to the
ARM endpoint. This is important, because if a feature is not exposed through the ARM
endpoint, none of the tools will be able to overcome this. Figure 4.13 shows the underlying
plumbing of ARM:

Figure 4.13 – ARM's underlying plumbing

136 Infrastructure Deployment

A way to quickly grasp how this API works is to proxy the traffic between the Azure portal
and the management endpoint with Fiddler (or any similar tool). You can go to the Azure
portal and start Fiddler with a filter (to reduce noise), as shown in Figure 4.14:

Figure 4.14 – Starting Fiddler with a filter

If you click around in the portal, the requests will be captured by Fiddler. After inspecting
these requests, you can easily find out how the ARM API works. In Figure 4.15, we can
also see the access token that was requested by the Azure portal to interact with the ARM
endpoint, on our behalf:

Figure 4.15 – The access token and ARM interactions that are captured by Fiddler

Diving into ARM templates 137

From time to time, you might need to interact with the ARM endpoint yourself, directly
from a PowerShell script or a custom application. It is interesting to understand how it
works, under the hood.

Now that we have clarified how every tool interacts with Azure, let's explore one of them,
namely, ARM templates.

Diving into ARM templates
ARM templates are Azure's native way of provisioning resources in Azure. Almost
everything can be deployed through ARM templates, although they do not cover all the
Azure services. In this section, we will dive into the ARM world and will provision some
services, so as to have a more hands-on experience. Let's get started!

Getting started with ARM
In the real world, it is unlikely that you will ever build an ARM template from scratch. To
get you started with ARM, here are a few important handy sources and tools:

• ARM Quickstart Templates is a repository of about 950 templates, and is available
here: https://azure.microsoft.com/resources/templates/.

• The export wizard of the Azure portal. You can create an Azure resource with the
portal and export the template afterward. While this method can be interesting in
some situations, where the documentation is a little unclear, exported templates
cannot be reused as-is to provision other resources.

• The Visual Studio Code ARM extension helps you author templates.

Let's now see the deployment methods of an ARM template.

Understanding the ARM template deployment
methods
ARM templates have three deployment methods:

• Single template files

• Nested template files

• Linked templates

https://azure.microsoft.com/resources/templates/

138 Infrastructure Deployment

Single and nested templates both rely on a single file. This means that all the resources
used by a given solution are declared and configured in that single file. This is easier
to deploy to Azure, because you have a single file to send, but it suffers from a major
drawback: a lack of standardization. Because, when working with a single file, you will
have to manipulate it over and over for each project, which is sub-optimal, in terms of
reusability. Nested templates were an attempt to maximize reusability with single files, but,
in most mature environments, only linked templates are used.

Linked templates allow you to define per-service templates and assemble them into
a master file, which is specific to a given application. As shown by Figure 4.16, only the
master file varies from one project to another, while the shared templates remain the
same. Even better, these shared templates can be versioned in a way that's similar to
a shared code library:

Figure 4.16 – Shared linked templates across projects

Therefore, shared templates are standardized and reused across assets, which is really
what you are looking for when building an automation factory. Let's now see the scopes to
which templates can be deployed.

Understanding the ARM template deployment scopes
Templates (whether single or linked) are always deployed against an Azure scope. These
scopes are as follows:

• Management groups

• Subscriptions

• Resource groups

Diving into ARM templates 139

Consider the following hierarchy, as shown in Figure 4.17:

Figure 4.17 – ARM template scopes – Management groups

The management groups, highlighted in Figure 4.17, are one of the deployment scopes.
Typically, templates targeting management groups relate to Azure policies and Azure
RBAC (role-based access control). As we have seen in Chapter 2, Solution Architecture,
Azure policies allow you to build actionable governance, and they enforce a set of controls
against resources on the verge of being deployed, as well as against already deployed
resources. RBAC allows you to define who/what has access to a given resource, which
in this case is the management group. Both RBAC role assignments and policies can be
configured through ARM templates.

140 Infrastructure Deployment

Next, Figure 4.18 shows you the subscription scope:

Figure 4.18 – ARM template scopes – Subscriptions

A management group may contain one or more subscriptions (typically more than one).
For example, you might have a DEV management group that has more flexible policies
and RBAC than the UAT and PROD groups. But you can also have different policies
and RBAC configurations per subscription, which can also be deployed through ARM
templates.

Diving into ARM templates 141

On top of RBAC and policies, ARM templates can also provision resource groups
themselves, when targeting the subscription scope. To do so, the factory must have
a subscription-level contributor permission, which is almost never the case in production,
except in very mature and cloud-native organizations. Therefore, in non-mature
organizations (probably 99.99% of them), resource groups are deployed manually.
A service principal, with contributor permission over the resource group, is provided to
the people in charge of setting up the CI/CD pipelines. That pipeline makes use of that
SPN (Service Principal Name) to provision resources to the resource group, which is our
next scope.

The last scope is the resource group, as shown in Figure 4.19:

Figure 4.19 – ARM template scopes – Resource groups

142 Infrastructure Deployment

Resource groups usually contain the resources for a single project. You may also have
shared resource groups (for example, hosting a SQL elastic pool or any other shared
service for cost optimization purposes). Other than this, every project-specific resource
will be hosted in the project's dedicated resource group. To do so, you are required to have
the resource group contributor permission level, and you are also required to have the
owner permission level, if you also deploy RBAC and policies.

The scope hierarchy is important because inheritance is applied by default. A policy or
role that is applied against a management group will cascade down to all its children
(sub management groups, subscriptions, resource groups, and resources). Therefore,
it is important to thoroughly think through your factory, in order to define the proper
permission levels for the CI/CD pipelines (while keeping the least privilege approach in
mind). That is where the maturity of the organization (in the areas of cloud practices)
plays an important role. A lack of maturity usually leads to a lack of trust in factory tools
and a lack of trust in Azure.

Beware that a single manual step alone, in the entire automated process, can ruin most
automation efforts. A rule of thumb is that the more you automate, the more you need to
empower tools, and ultimately, the more you need to trust them. Setting up the factory
is a part of your cloud foundation, but it is also quite disruptive vis-à-vis traditional IT
practices. However, if your company has genuine cloud ambitions, it is important to invest
in a well-designed and empowered factory to get the cloud promises realized. In our
Zooming in on a reference architecture with Azure DevOps section, we will show you how
to set it up, but let's first explore the deployment modes.

Understanding the ARM template deployment modes
ARM templates support two deployment modes:

• Complete

• Incremental

For the sake of brevity, we will quickly review both modes, but you should note that only
the incremental mode is supported with linked templates. So, it is unlikely that you would
ever use the complete mode.

Diving into ARM templates 143

Complete mode, as its name indicates, will make sure that the outcome of a deployment
will match exactly what is defined in the template. To understand this better, let's go
through a scenario:

Application A requires an app service, a key vault, and a SQL database. You have defined
a single template, with the three resource types, and you used the complete deployment
mode. Application A is now deployed to its resource group, which currently contains all
the necessary resources.

Later, the application owners realize that they forgot to request an application insights
component. For the sake of time, and because it is urgent, you quickly provision the
application insights component via the Azure portal. Application A now has four
components. Next, Application A's code is modified, and you redeploy it through your
CI/CD pipelines. Since ARM templates are idempotent, you redeploy them too, but you
did not include the application insights component (you forgot that it was manually
provisioned). Because you opted for the complete mode, the application insights
component gets deleted by the resource manager.

With incremental templates, the application insights components would remain because
they only add or modify the services that are referenced in the template. They do not
touch any other resource that would have been provisioned via another channel.

Whether you use the complete or incremental mode, a rule of thumb is to only provision
through CI/CD to prevent any accidental resource removal as just explained, which is
never pleasant. It's interesting to note that ARM templates are idempotent (meaning that
they can be applied multiple times), so it will not break, even if you redeploy the same
template 10 times against existing resources. However, if a deployment fails in the middle,
there is no real rollback mechanism that would reset your changes. Instead, you can
either redeploy until the failure (which may be transient) is fixed, or you can tell ARM to
redeploy the last successful deployment. So, instead of a real rollback, it overwrites the
current changes with the last successful deployment.

Now that we have covered the high-level functionalities of ARM templates, let's look at the
template's internals.

144 Infrastructure Deployment

Understanding the anatomy of an ARM template
Figure 4.20 shows you the most frequently used sections that are part of ARM templates:

Figure 4.20 – ARM templates

Let's have a closer look at the sections shown in the preceding diagram:

• The parameters section makes templates more dynamic. Remember that we are
aiming to reuse templates across projects. Parameters are a way to inject dynamic
values during the deployments.

Diving into ARM templates 145

• Variables are local to the template and allow you to define, once and for all, values
that are reused everywhere within the template. An example of this could be the
concatenation of two parameters.

• The resources section is, of course, the most important one. This is where you
define all the resources that must be provisioned by the template. In our previous
example, that section would have contained the app service, the SQL server
instance, and the key vault.

• Outputs makes it easy to define variables that can be reused outside of the ARM
template itself. For example, if you provision a storage account, you might output its
keys so that they can be reused elsewhere during the deployment.

• The functions section lets you define custom functions.

Besides the custom functions, the ARM language exposes many built-in functions,
as follows:

• Array and object functions: last(), skip(), min(), max(), and many others.

• Comparison functions: equals(), greater(), and so on.

• Deployment functions: variables(), parameters(), and others.

• Logical functions: and(), or(), and so on.

• Numeric functions: int(), float(), mod(), and more.

• Resource functions: listKeys(), resourceId(), and several other functions.
Resource functions are used heavily.

• String functions: concat(), indexOf(), startsWith(), and suchlike.

Mastering these functions is important, especially the resource-related functions.

146 Infrastructure Deployment

Resources might depend on each other. For instance, Figure 4.21 shows a template that
deploys both an app service and an app service plan:

Figure 4.21 – ARM template dependencies

The highlighted parts of Figure 4.21 show the dependencies in action. The second resource
depends on the first one and declares this dependency explicitly. You might have noticed
that we use the resourceId() function to get the identifier of the app service plan.

The reason why we must take dependencies into account is because Azure's resource
manager API will always try to deploy all the resources of the template in parallel, so
as to optimize your deployment speed. However, in the preceding example, we cannot
deploy the app service if we have not yet deployed its underlying compute building
block (namely, the app service plan). Microsoft could have handled the dependencies for
us, but unfortunately, we must manage that ourselves. That may seem trivial, but it can
quickly become challenging in large applications, or when working with shared services.
Fortunately, Azure Bicep (refer to the Getting started with Azure Bicep section) helps in
this regard.

Diving into ARM templates 147

When using single template files, you usually declare all the dependencies across
your resources, in that template. When using linked templates, you usually declare
dependencies across your deployments, directly in the master file, as we will see in the
next section.

Building a concrete example using linked templates
To gain a better understanding of how it works, let's go through a very basic scenario,
which should make you understand the most important aspects of using linked templates.
The template files are available in the GitHub repo at https://github.com/
PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/
tree/master/Chapter04/IaC.

Figure 4.22 shows how the master file interacts with our linked templates:

Figure 4.22 – An app service and its plan that uses linked templates

For the sake of simplicity, we will perform the following manual steps:

1. Create a resource group in Azure. Just go to your subscription and create a resource
group named packt.

2. Create a storage account, and create a container named templates, with
anonymous access enabled.

3. Upload both the app-service-plan.json and app-service.json files into
the container.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter04/IaC
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter04/IaC
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter04/IaC

148 Infrastructure Deployment

Ultimately, your environment should look like Figure 4.23:

Figure 4.23 – The resource group and its storage account

Figure 4.24 shows you the two template files that are stored in the templates container
of the storage account:

Figure 4.24 – The templates files within the container

Note that you can skip these manual steps and go straight to the explanations if you do not
want to follow along with this little exercise.

Diving into ARM templates 149

In the real world, the storage account we use would be secured by using shared access
signatures. We used anonymous containers to make our life easy. The reason why a storage
account is needed is because during deployment, we only send the master.json file to
the ARM endpoint. Then, ARM needs to be able to download the linked templates from
a connectable (and ideally secure) store, hence, the storage account. It is possible to use
any other publicly available storage system that allows you to pass a key, or some sort of
authentication mechanism, through the URL.

Let's now focus on the contents of the templates. We'll start with app-service-plan.
json:

Figure 4.25 – An app service plan template

150 Infrastructure Deployment

Figure 4.25 starts with a few parameters. Every parameter (that has a default value) is
optional. We basically want to know the location, name, pricing tier, and the number
of instances that should be provisioned for this app service plan. Next, we have the
resources section.

We have a single resource of type Microsoft.Web/serverFarms that is configured with
our parameters. We finish with the outputs section, where we return the identifier of the
provisioned app service plan.

Let's now analyze the app-service.json template, as shown in Figure 4.26:

Figure 4.26 – An app service template

Diving into ARM templates 151

Again, Figure 4.26 starts with the parameter section. This time, we expect to receive
the serverFarmId parameter, which is the identifier of the app service plan that is
attached to our app service. In the Resources section, we declare one resource of type
Microsoft.Web/sites, and we enable a managed system identity (MSI) by defining a
SystemAssigned identity. Note that this is a best practice that we will explore further
in Chapter 7, Security Architecture. We also define a few configuration settings, and we
attach our app service to the app service plan, through the serverFarmId parameter.
Lastly, we output the identifier of the system identity, so that the pipeline can assign
to it a number of permissions, if required. Admittedly, these two sample templates are
oversimplified. They work, but in the real world, you would certainly deal with key vault
secret references and more advanced app service settings.

Now that we have two separate templates, which can be reused across projects, we need
our master file, which will link them for our demo project. Remember that only the
master file is project-specific; linked templates are reusable.

Figure 4.27 shows you the contents of our master file:

Figure 4.27 – The master file

152 Infrastructure Deployment

This time, let's jump directly to our resources section. Both resources are of the type
Microsoft.Resources/deployments. The first one calls the app-service-plan.json
linked template, which is in our storage account. It passes the name of the app service
plan to the linked template. Our second resource calls our app-service.json linked
template, and it passes the serverFarmId parameter, by using the output of our first
deployment. Note that the dependsOn section tells the ARM to wait until the app-service-
plan deployment is finished before starting our app-service-deployment.

To make a deployment dynamic, we work with parameter files or variables, which are
passed during the deployment. That changes according to the target environment. For the
sake of simplicity, we will work with the parameters shown in Figure 4.28:

Figure 4.28 – The parameters

In a real-world deployment, both appName and hostingPlanName would vary, according
to the target environment (prod/non-prod). Even the location parameter may vary when
you're working with an active/passive disaster recovery (DR) setup.

We now have everything that we need to concretely provision these services into our packt
resource group. We will use Azure DevOps (refer to the Technical requirements section to
set up Azure DevOps if needed) to deploy our code. Once in Azure DevOps, you should
do the following:

1. Create a repository named packt or reuse an existing one.

2. Make sure to replace the location of the storage account container in master.
json. So, replace https://packtmabook with the storage account that you
created previously.

3. Upload the master.json and master.parameters.json files into the
master branch.

Diving into ARM templates 153

You should end up with the files shown in Figure 4.29:

Figure 4.29 – The Azure DevOps repo

Remember that our shared templates are already in their storage account. In the last
section of this chapter, we will show you how to link everything together directly in
Azure DevOps.

Now we can create our YAML build pipeline to provision these resources. Locate the
pipelines link in Azure DevOps and choose the Azure Repos Git template, as shown
in Figure 4.30:

Figure 4.30 – Creating the build pipeline

154 Infrastructure Deployment

4. Next, we will select our packt repo, as shown in Figure 4.31:

Figure 4.31 – Our repository selection

5. Then, we select the Starter pipeline option. See Figure 4.32:

Figure 4.32 – Starter pipeline

6. Click on Show more if you do not see the Starter pipeline option. You should end
up with a .yml file, as shown in Figure 4.33:

Diving into ARM templates 155

Figure 4.33 – The starter pipeline YAML code

7. Remove everything that is below steps. On the right-hand side, click on Show
assistant. Then, search for the arm deployment task, as shown in Figure 4.34:

Figure 4.34 – Selecting the ARM deployment task

156 Infrastructure Deployment

8. Next, you must configure this task. See Figure 4.35:

Figure 4.35 – Configuring the ARM deployment task

Diving into ARM templates 157

9. If you do not have an existing Azure Resource Manager connection, just make sure
you're logged in with a user account that has sufficient permissions against the
target Azure subscription to let Azure DevOps create a connection for you. This
connection is used by the pipeline to authenticate against Azure Active Directory
when deploying to the resource group. The YAML code of our configuration is
shown in Figure 4.36:

Figure 4.36 – The configuration YAML code

158 Infrastructure Deployment

10. Now, if you click the Save and run button, you should be prompted to allow the
pipeline to consume the service connection. Figure 4.37 shows you what the job run
looks like:

Figure 4.37 – The build job in action

11. Upon job completion (1 minute 39 seconds in our example), the resources should
be provisioned in the target resource group. See Figure 4.38:

Figure 4.38 – The provisioned resources upon job completion

Getting started with Azure Bicep 159

Note that in Azure DevOps, as in many factory tools, there are build and release pipelines.
In our example, we have used a build pipeline to provision the services to the target
environment. It has become a common trend to use YAML pipelines to do both build and
release at the same time. Now that you have grasped the essential part of working with
ARM templates, we will see how Azure Bicep may alleviate a few ARM constraints.

Getting started with Azure Bicep
At the time of writing, Azure Bicep is still in early development and not production ready
yet, but this could change by the time you read this.

The main purpose of Azure Bicep is to do the following:

• Alleviate the complexity of the ARM template language to make it less verbose
and to bring a more developer-friendly approach.

• Compiling Bicep files to produce a single ARM template. This prevents the
use of a storage account or any other publicly available location for storing
linked templates.

Unlike Terraform, Bicep remains Azure-specific. You can think of it as the next generation
of the ARM language. To know more about Bicep and to stay tuned, you should subscribe
to the Azure Bicep repo at https://github.com/Azure/bicep. Now we will
redeploy exactly what we deployed previously, but we'll use raw ARM templates and
evaluate the benefits of using Bicep. In order to perform this exercise, you must go
through the following steps:

1. Install the Bicep client tools (get the setup instructions at https://github.
com/Azure/bicep/blob/main/docs/installing.md).

2. Install the Visual Studio Code extension for Bicep. This step is optional, but it
improves the authoring experience.

https://github.com/Azure/bicep
https://github.com/Azure/bicep/blob/main/docs/installing.md
https://github.com/Azure/bicep/blob/main/docs/installing.md

160 Infrastructure Deployment

3. Once in Visual Studio Code, you can open the packt.bicep file, which is
available in our GitHub repo. You should end up with something that looks like
Figure 4.39:

Figure 4.39 – Deploying an app service plan along with an app service using Bicep

Notice how Bicep is much more concise than raw ARM templates. We first declare our
parameters, and then our two resources. This time, the webapp resource does not need to
explicitly declare its dependency on the plan resource. The simple reference plan.id is
enough to let Bicep infer this dependency. This makes Bicep files much more readable.

However, at the time of writing, there is not yet an official Bicep integration with Azure
DevOps (only some experimental features). So, we will simply build our Bicep file to get
the resulting ARM template. Figure 4.40 shows you how easy it is to build the Bicep file
through the usage of the bicep build command:

Getting started with Azure Bicep 161

Figure 4.40 – Building the Bicep file using Visual Studio Code's terminal

Upon build completion, you should get the corresponding ARM template generated
within the same folder as your Bicep file, as shown by Figure 4.41:

Figure 4.41 – The ARM JSON file generated by the Bicep build command

From there on, you can test the deployment with the -whatif option of the Azure
CLI, direct from Visual Studio Code. Opening the terminal again, you can enter the
following command:

az deployment group create --resource-group 'packt' --template-
file .\packt.json --confirm-with-what-if

162 Infrastructure Deployment

This command should validate the generated ARM template against the target resource
group. You will be prompted to enter the hosting plan name, as well as the web app name,
and you can get the result of that command, as shown by Figure 4.42:

Figure 4.42 – Validating the generated ARM template against Azure

Note that you need to have the latest version of the Azure CLI installed on your machine
in order to test the deployment with the –confirm-whatif option. If you want to
test this, an alternative is to upload the generated ARM template into an Azure DevOps
repo, and then deploy it, like we did in the previous section. Now we are going to see how
Terraform compares with ARM templates and Bicep.

Getting started with Terraform
Terraform is HashiCorp's star IaC product. They define it as a tool that can be used to
provision and manage any cloud, infrastructure, or service. Terraform's architecture
is based on hundreds of providers, among which is the Azure provider. The value
proposal of Terraform is to propose a common way to define IaC templates, no matter
the target platform. The least we can say is that HashiCorp succeeded in making a very
broad and good product. In addition to the official providers, there are also dozens of
community-provided providers. Terraform's most important commands are the following:

• init: Used only when referencing a new provider or a new provider version

• plan: An optional step for comparing the known state with the new desired state

• apply: A command to apply the new desired state for the resources defined in
the template

Getting started with Terraform 163

Templates are written in HCL (HashiCorp configuration language – https://www.
terraform.io/docs/configuration/syntax.html). We are going to replay
the resource deployment we made earlier (with ARM templates and Bicep) to see how it
compares. Terraform is easy to set up because there is only a single binary file (which you
can find on Terraform's download page). However, we will make it even easier for you to
experiment by using the Azure Cloud Shell that we have already used with the imperative
command-line tools. Start by launching Azure Cloud Shell, as we did earlier. Once you're
in Cloud Shell, run the following command:

mkdir terraform

Next, run this command:

cd terraform

Then, you can launch the default Cloud Shell editor using the following command:

code main.tf

This allows us to create our main.tf template in the current folder. Once there, you can
copy the contents of our sample Terraform file, which is located at https://github.
com/PacktPublishing/The-Azure-Cloud-Native-Architecture-
Mapbook/tree/master/Chapter04/IaC/terraform/main.tf.

You should end up with the Terraform template looking like it does in Figure 4.43:

Figure 4.43 – The Terraform template in Azure Cloud Shell

https://www.terraform.io/docs/configuration/syntax.html
https://www.terraform.io/docs/configuration/syntax.html
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter04/IaC/terraform/main.tf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter04/IaC/terraform/main.tf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter04/IaC/terraform/main.tf

164 Infrastructure Deployment

Let's now analyze this template. The first block, as illustrated in Figure 4.44, is the
declaration of the Azure provider:

Figure 4.44 – The Azure provider declaration

This is where you will have to use the init command later for Terraform to pull the
required resources for the azurerm module. Our second code block, shown in Figure
4.45, is the declaration of our existing packt resource group:

Figure 4.45 – The declaration of the packt resource group

We use the data construct to refer to any resource that is not present in the template itself.
Our next two blocks, shown in Figure 4.46, are the two resources we want to provision:

Figure 4.46 – The resources to provision

Getting started with Terraform 165

The first resource is our app service plan, and the second resource is our app service.
Notice the reference for the app_service_plan_id property. We can easily reference
our first resource from the second one. For the sake of brevity, we do not show you how
to work with the parameter files, nor the outputs, but Terraform also supports them. Now
we are ready to try this template out. Back in Azure Cloud Shell, you must first run the
terraform init command, as shown in Figure 4.47:

Figure 4.47 – The terraform init command

This allows Terraform to resolve all dependencies to the Azure provider. Next, we can
optionally run the terraform plan command to evaluate the changes to the existing
resources. See Figure 4.48. Remember that this is our first deployment, so Terraform has
no recorded state yet:

Figure 4.48 – The terraform plan command

166 Infrastructure Deployment

You can review the complete output, but since the template is very basic, everything
should be fine. Finally, we concretely deploy the template with terraform apply, as
shown in Figure 4.49:

Figure 4.49 – Deploying resources with terraform apply

Figure 4.49 shows that the apply command gives you a nice output, given what has been
done and how long each step took to complete. The experience is quite similar to Azure
Bicep, which was probably inspired by Terraform.

Once you have applied the template, the resources should be available in the resource
group. Now that we have provisioned our two resources, Terraform has generated a state
file, as shown in Figure 4.50:

Figure 4.50 – The state file

Terraform maintains the deployment state in this state file. If you are working for a small
company that does not want to invest money in a factory, and where you are the IaC
person, then you can rely on Azure Cloud Shell alone and have your own local state files.
If you work as a team with a real factory, such state files must be persisted in remote
backend stores, such as Azure Storage.

Getting started with Terraform 167

You can inspect the state file, but you should not change it manually. This is the source of
truth for Terraform. Any change to the deployed resource, via another channel, can be
detected by Terraform when running the plan command. To test this, you can switch the
app service's HTTPS only property toggle to on, as shown in Figure 4.51:

Figure 4.51 – Switching HTTPS only from off to on

Now that we have made this change through the Azure Portal, instead of Terraform, if we
rerun a plan command, we see that the current state has deviated from Terraform's state.
See Figure 4.52:

Figure 4.52 – A change detected by the Terraform plan command

168 Infrastructure Deployment

Terraform has flagged the https_only property, and it shows that the current value is
true. This will be set back to false if we run the apply command. In case you cannot
avoid changes from channels other than Terraform, it is possible to refresh the Terraform
state. Something important to note as well is the fact that, unlike Bicep, Terraform is
not limited to the possibilities of ARM templates because Terraform also makes use of
the Azure CLI behind the scenes. For instance, while ARM templates cannot deal with
Azure Active Directory app registration (a very common need), Terraform can. Also, it is
important to note that Terraform natively supports the deployment of ARM templates by
using HCL in case a feature is available in ARM but not in Terraform.

To conclude, we can say that Terraform is indeed easy. It runs across the different
providers and is more powerful than ARM templates and Azure Bicep. You should
definitely favor Terraform over ARM and Azure Bicep if you know that you will not be
restricting your IaC practice to Azure alone. Otherwise, it is more a question of style and
preference as opposed to a genuine black or white answer.

Let's now explore a real-world approach – working with native ARM templates in an
industrial manner.

Zooming in on a reference architecture with
Azure DevOps
So far, we have reviewed the fundamentals of Terraform, ARM templates, and Azure
Bicep. It is now time to see how you can concretely set up a factory that's designed to
provision resources and deploy applications in an industrial manner. Of course, we will
not walk you through the complete setup, but we will describe the possible approaches.

Beware that it takes time to get a fully industrialized factory up and running, and it is
a significant investment. So far, we have largely focused on the IaC bits, but of course the
infrastructure components that we provision are used by applications that have their own
life cycle. At the end of the day, you need to find a way to deploy both the application code
and the infrastructure together, while still being able to test your own infrastructure work,
independently of the applications that will consume your components. Therefore, we must
distinguish the authoring and versioning of the IaC components themselves (our shared
templates), and the project-specific pipelines that will consume these IaC artifacts. Our
objectives are as follows:

• We want to be autonomous to define our standard templates.

• We want to be autonomous to test our standard templates.

• We want applications to consume officially released templates.

Zooming in on a reference architecture with Azure DevOps 169

• We do not want to cause any regression to existing applications, so we need to
version our ARM templates to support multiple versions at a time, and to be
backward compatible.

We will now describe two approaches – a simple one and a more advanced one. Why two?
Simply because not every company has a significant number of assets in Azure to justify
a very advanced factory, which requires dedicated manpower to work on it. Let's start with
the simple approach.

Using a simple approach to an IaC factory
Since ARM templates are fully declarative, they do not require an effective build prior to
consumption. You may simply store your ARM template files into different Git branches
to version them, as shown in Figure 4.53:

Figure 4.53 – Using branches to version ARM templates

170 Infrastructure Deployment

Once your changes have been tested and validated in the DEV branch, you merge it with
the master branch and create a new release branch from the master to publish a new
version. For non-breaking changes, you may override an existing version and merge that
one with the master branch. Then you simply publish the whole branch onto a shared
storage account in Azure, which can be used by the various applications. Figure 4.54
shows the different steps involved in that process:

Figure 4.54 – A simple approach for IaC components

Zooming in on a reference architecture with Azure DevOps 171

Firstly, we work with a dedicated, separate Azure DevOps repository. Whenever an
engineer commits a change to an ARM template, it triggers an optional CI build that
checks the syntax before trying a deployment to Azure. During deployment, you will
copy the ARM templates to a test storage account (just for you). You will deploy the ARM
templates independently and/or with a master file, which assembles them to mimic a real
application. Once the validation has been done, you can simply publish the new version to
a new branch, and then publish the branch to a shared storage account, which is used by
the applications. This approach is very easy, but it has the following drawbacks:

• A new version branch will be created whenever any template gets modified. So, if you
have 10 services and only change one of them, you will create a new branch that will
contain 9 unchanged services, plus the changed one. While this is a bit of a waste of
space/resources, ARM templates are very lightweight, so the impact is not dramatic.

• Similarly, whenever a single template changes, all the templates will be published to
the shared storage account, in a dedicated container. It's the same consequence and
observation as before. You are charged for the storage costs, but the templates are so
tiny that you should not even really notice the difference.

Now that you have published your templates, they are ready for consumption. Figure 4.55
shows you how to consume them easily:

Figure 4.55 – IaC consumption – Simple approach

172 Infrastructure Deployment

This time, whenever the application code changes, there is a CI build that builds the
application code, followed by a CD that deploys both the infrastructure and the application
code together. Notice that the application pipeline references the master.json file,
where it assembles the components that are needed for the application.

In the master file, you must reference the shared storage account and the target IaC
version. Should new IaC versions be released, you will not be impacted. Should
non-breaking changes overwrite the IaC version you are using, you will adjust the
application-specific infra components during the next application deployment. Remember
that ARM templates are idempotent, so you can redeploy against an existing application at
no risk. The only drawback of redeploying the infrastructure is the loss of time, which is
taken by the ARM verification, but this is usually OK.

The simple approach is rather easy to implement and may work with non-dedicated
DevOps specialists. Let's now look at a more advanced approach.

Using an advanced approach to an IaC factory
If you have more people available to work on the factory, and if you are using a large
number of Azure services, you may want to go the extra mile and use IaC artifacts as
shared code libraries, as you would typically do with pure application code. You may
also want to spare the extra build minutes and avoid redeploying the ARM templates
at every deployment. A few lost minutes here and there are OK, as long as you do not
make 300 deployments a day! You might also want to have more granularity in the IaC
components that you want to use, such as, for example, mixing different service versions
(version 1.1 of storage-json with version 1.2 of apim-json), which is not possible with
the simple approach we depicted earlier. Figure 4.56 shows you the steps involved in the
advanced approach:

Zooming in on a reference architecture with Azure DevOps 173

Figure 4.56 – An advanced approach for IaC component industrialization

As with the simple approach, a CI build kicks off upon a commit over a template, which
in turn triggers the CD step. Resources are also being deployed to Azure. Upon successful
deployment, the template is published to Azure DevOps Artifacts as a pre-release
view, as a NuGet package. Following a functional validation of the pre-release, you can
promote the pre-release view to a release view. Azure DevOps exposes a REST API to
do the promotion, but you can also find an extension (https://marketplace.
visualstudio.com/items?itemName=rvo.vsts-promotepackage-task) on
the Azure DevOps marketplace for doing so. Once promoted, the packages are available
for consumption.

https://marketplace.visualstudio.com/items?itemName=rvo.vsts-promotepackage-task
https://marketplace.visualstudio.com/items?itemName=rvo.vsts-promotepackage-task

174 Infrastructure Deployment

Figure 4.57 shows you the consumption steps:

Figure 4.57 – IaC advanced – Consumption

The steps are very similar to the simple approach, except for two noticeable differences:

• We validate that re-provisioning of the resources is required, against the already
existing deployed resources. You can do that using Azure resource tags to compare
the versions. In case we need to redeploy any IaC component, we'll restore their
corresponding NuGet packages from Azure Artifacts and we'll copy their contents
to a blob storage, to let the ARM endpoint pull the templates from that location. We
will (re)provision and tag the Azure resources accordingly.

• Similarly, applications often deal with multiple build artifacts. Here again, we will
only redeploy if needed.

Summary 175

This slightly different approach might seem trivial, but you cannot achieve this without
writing custom code/tasks, while our simple approach can be fully achieved with out-of-
the-box Azure DevOps tasks. Let's now recap what we have seen during this chapter.

Summary
In this chapter, we briefly explained what the benefits are of a CI/CD pipeline and of
DevOps tooling in general. We also highlighted how challenging it can be to have a fully
functioning factory.

We made it clear that there is only one ruler in Azure's IaC world: the ARM endpoint. All
the imperative and declarative tools and languages ultimately talk to the ARM endpoint.
We shed some light on Terraform, native ARM templates, and Azure Bicep, ARM's next-
generation language. Beyond imperative tools and declarative languages, we explored
how to set the different elements to music with Azure DevOps. Concepts explained for
Azure DevOps also apply to other platforms. By now, you should have understood that
a fully functioning factory leveraging IaC is a vital element for building and provisioning
cloud solutions. You should have gained sufficient knowledge to get started with your own
factory, or to accompany DevOps teams on their CI/CD journey.

IaC is a key part of pure cloud and cloud-native applications, which we are going to
explore in the next chapter.

Building cloud and cloud-native solutions means that you must be able to deal with
heavily distributed architectures. We will guide you through some typical distributed
patterns and how the ecosystem (Azure, K8s) can help you achieve more and better
results. Building solutions does not solely mean building applications. It may also refer
to pure data solutions, which you need to extract valuable insights and to help decision-
makers make informed decisions. We will review the numerous data services and shed
some light on how to combine traditional and modern data practices in Azure. Finally,
whatever you build, it should be secure, so we will also focus on this very important
dimension: security in the cloud.

We will cover the following topics in this section:

• Chapter 5, Application Architecture

• Chapter 6, Data Architecture

• Chapter 7, Security Architecture

Section 2:
Application

Development,
Data, and Security

5
Application

Architecture
In the previous chapters, we thoroughly covered infrastructure. Now, the time has come
to discuss your application-related concerns. After all, the purpose of an infrastructure
is to host one or more applications. We will only consider Communication as a Service
(CaaS), Platform as a Service (PaaS), and Function as a Service (FaaS), which are
cloud and cloud-native approaches, in line with modern development techniques. We
will not delve into Infrastructure as a Service (IaaS), since it has zero impact on the way
applications should be architected, compared to on-premises data centers.

In this chapter, you will learn about the difference between traditional IT practices and
cloud-native practices. Additionally, you will learn about the distributed nature of both
cloud and cloud-native solutions. Modern solutions are less code-centric because many
typical application duties can be offloaded to off-the-shelf services. With serverless, you
can even build powerful zero-code solutions.

180 Application Architecture

More specifically, we will cover the following topics in this chapter:

• Understanding cloud and cloud-native development

• Exploring the Azure Application Architecture Map and cloud design patterns

• Exploring Event-Driven Architectures (EDAs) and messaging architectures

• Developing microservices

The prevalence of cloud ecosystems is a game changer, and it should be tackled from the
beginning when you're designing applications. The application architect shouldn't only
focus on the application code and some development design patterns. As per our real-world
observations, this fact is often misunderstood or overlooked by application architects, who
tend to forget about the ecosystem their code is running in. By the end of this chapter, you
will be better equipped to grasp new distributed developments and modern ecosystems.

Let's walk through this world that's in a constant state of evolution!

Technical requirements
If you want to practice the explanations provided in this chapter, you will require
the following:

• An Azure subscription: To create your free Azure account, follow the steps
explained at https://azure.microsoft.com/free/.

• Visual Studio 2019: You will need this to open the solution provided on GitHub.

• Dapr (Distributed Application Runtime) CLI: To install the Dapr CLI, follow the
steps explained at https://github.com/dapr/cli.

• Docker: To install Docker Engine, follow the steps explained at https://docs.
docker.com/get-docker/.

• Microsoft Visio: You will need this to open the diagrams, although they are also
provided as PNG files.

• Fiddler or Postman: Use your preferred tool. We use Fiddler in this book, but feel
free to use any other HTTP tool you want.

All of the code samples and diagrams are available at https://github.com/
PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/
tree/master/Chapter05/.

The CiA videos for this book can be viewed at: http://bit.ly/3pp9vIH

https://azure.microsoft.com/free/
https://github.com/dapr/cli
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter05/
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter05/
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter05/
http://bit.ly/3pp9vIH

Understanding cloud and cloud-native development 181

Understanding cloud and cloud‑native
development
Before going further into the substance of the map, let's introduce the notion of cloud and
cloud-native development, which you might not be familiar with. The cloud is a particular
ecosystem, and we should ideally leverage its unique capabilities to minimize frictions
and frustrations. The best way to achieve this goal is to develop cloud and cloud-native
applications. Developing cloud and cloud-native solutions also transforms the way we
design applications and the type of frameworks we might use or build, and that is what we
are going to explore in this section.

One of the biggest challenges when starting to work with cloud and cloud-native
approaches is the fact that applications are distributed. In traditional IT, we still have many
monoliths, or in the best case, we work with Service-Oriented Architecture (SOA). SOA
has proven its value and is certainly still future proof; however, as always, the IT world has
evolved, and new paradigms have emerged.

Our current application perimeter is often restricted to an N-tier architecture, with a
frontend, a backend, and a database, living on a few servers. We control the entire code
base and underlying systems because we do everything ourselves. We write custom
in-house frameworks to deal with cross-cutting concerns, such as logging, exception
handling, and more. Our in-house frameworks become monoliths themselves. If you
want, you can still work like that in the cloud, using the IaaS hosting model. As mentioned
in Chapter 1, Getting Started as an Azure Architect, IaaS is a perfect business-as-usual
solution. You keep controlling everything, except the hardware itself, and you can keep
developing assets in a traditional way. We also explained that you might still have some
fruitful business cases, but this is certainly not cloud nor cloud native. Of course, IaaS can
be used as a transition to first lift-and-shift your assets as is until they reach their end of
life, or until you have a budget to refactor and transform them into modern applications.

With cloud and cloud-native applications, we tend to rely more on off-the-shelf
frameworks, services, and ecosystems. We assemble existing cloud services together
and add our code on top. Some services come with a lot of built-in functionality. For
example, the Azure Cognitive Services offerings are feature-rich, which prevents you
from writing everything yourself, and it helps you to build applications faster. Another
example is Azure API Management, which ships with many technical features, such
as API throttling and JSON web token (JWT) token validation, which we can use to
our advantage, without reinventing the wheel in the code. Moreover, such services are
designed with resilience and robustness from the ground up. You will, at best, create a pale
imitation, that is, if you stubbornly develop it yourself.

182 Application Architecture

To adopt a cloud or cloud-native approach, you inevitably need to modernize/refactor the
assets or start from a greenfield. Although there is probably not a single definition of cloud
and cloud-native development, let's share our vision and try to demystify it. A cloud-
development approach looks similar to Figure 5.1:

Figure 5.1 – Cloud development

Cloud development relies on three pillars:

• DevOps: This refers to the way we organize teams to collaborate on a product.
Beyond technicalities, it really focusses on the organizational aspects, for instance,
the notion of virtual teams, the product owner, the minimum viable product
(MVP), user stories, sprints, and more.

• CI/CD: We explained CI/CD in Chapter 4, Infrastructure Deployment. As a
reminder, it is our factory, that is, our automation tool chain that plays a crucial role
to set things to music. This infrastructure-as-code approach is an integral part of
cloud and cloud-native development.

• PaaS/FaaS: We explained these hosting models in Chapter 1, Getting Started as an
Azure Architect. The point we want to make here is that you can delegate a big part
of the functionalities and technicalities to off-the-shelf services that are managed
by the cloud provider. You accept that you do not control everything, and you avoid
reinventing the wheel in your code. As an application architect, you must study
the Azure service catalog and see what it can directly bring to your application.
You may want to add some abstraction layers in order to prevent vendor lock-in
syndrome, but you should not abuse them.

Exploring the Azure Application Architecture Map 183

A cloud-native development approach looks similar to Figure 5.2:

Figure 5.2 – Cloud-native development

DevOps and CI/CD remain part of the equation, but we add microservices and containers
to the mix. We demonstrated in Chapter 3, Infrastructure Design, why using Kubernetes
(K8s) is a better fit for microservices than native Azure services. Paradoxically, it appears
that you can make cloud-native development on-premises, because it is, of course,
possible to self-host container orchestrators. In theory, shipping code in containers should
not make any difference, other than packaging the application differently. Reality proves
otherwise. Make no mistake, this is a world of difference.

Every serious container platform relies on an orchestrator (K8s, OpenShift, and more),
and such platforms come with their own ecosystems. They include plenty of tools
and services that you cannot ignore as an application architect because they precisely
encompass both technical and functional features. Let's now dive into our map, focusing
on the cloud design patterns. We will also describe some of the PaaS/FaaS services that are
part of a cloud development approach.

Exploring the Azure Application
Architecture Map
In this section, we are going to explore the Azure Application Architecture Map. The
purpose of this map is to help you find relevant services, with regard to cloud and cloud-
native design patterns. It also browses the different data options for BASE and ACID
database engines because data is part of every application.

184 Application Architecture

In Chapter 1, Getting Started as an Azure Architect, we saw that the application architect
mainly focuses on the programming languages, Software Development Kit (SDKs), and
design patterns in general. As a metaphor, we could say that application architects remain
at layer 7 of the Open Systems Interconnection (OSI) model. Therefore, we will review
these patterns, as well as some of the useful libraries you can use in your applications. To
remain on the Microsoft ecosystem, we will mostly list .NET Core libraries, although most
of them are also available in other programming languages:

Figure 5.3 – The Azure Application Architecture Map

Important note
To view the full Azure Application Architecture Map (Figure 5.3),
you can download the PDF file here: https://github.com/
PacktPublishing/The-Azure-Cloud-Native-
Architecture-Mapbook/blob/master/Chapter05/maps/
Azure%20Application%20Architecture.pdf.

Our map has four top-level groups:

• DATA: Every application deals with data. We will mostly cover Cosmos DB and
its prevalence over all the other database engines, when dealing with CQRS and
Event Sourcing.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/maps/Azure%20Application%20Architecture.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/maps/Azure%20Application%20Architecture.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/maps/Azure%20Application%20Architecture.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/maps/Azure%20Application%20Architecture.pdf

Exploring the Azure Application Architecture Map 185

• CLOUD DESIGN PATTERNS: This refers to an enumeration of the different patterns
for which some Azure services can be used. For some patterns, we also added the
K8s-equivalent features/services that may help to address a particular pattern.

• COMMODITIES: With this, we cover some transversal requirements, for
whatever application.

• EDA/MESSAGING: This top-level group is part of our map for the sake of
completeness, but we already walked you through it in Chapter 2, Solution Architecture.

Let's start with the DATA top-level group.

Zooming in on data
In this section, we will focus on the DATA top-level group. This will help us to better
understand the design patterns. Figure 5.4 depicts the top-level DATA group:

Figure 5.4 – The top-level DATA group

Nowadays, there is a clear trend to default to NoSQL for everything. As an application
architect, part of your duties involves stepping back for a second and challenging the actual
need of using a NoSQL store. We introduced the notions of BASE and ACID in Chapter
2, Solution Architecture. You should review the need for a SQL or NoSQL store, in light of
ACID versus BASE, to make sure that NoSQL is indeed appropriate for your use case.

If you opt for Cosmos DB, make sure that eventual consistency (which we largely
explained in the Systems of records section in Chapter 2, Solution Architecture) is an
acceptable consequence for the business. For example, if you build a content management
system that hosts blogs, you can easily use Cosmos DB in full eventual consistency mode,
because the number of likes and comments per blog post is not critical information.
Nobody really cares whether one visitor sees 12 likes while another one sees 15 likes for
the same post. Eventually, they will both see 15, and that is perfectly acceptable. However,
if you are selling products online, you would not want two visitors to see different prices
for the same product and, eventually, see the same price. You want them to see the correct
price directly.

186 Application Architecture

Cosmos DB can, of course, support stronger consistency models, but this is at the cost
of write speed, which, in this case, might lead you to ultimately discard Cosmos DB.
Table Storage is an alternative NoSQL engine with strong consistency. For real big
data scenarios, you should instead opt for Cosmos DB, which can scale infinitely if well
designed, as opposed to Table Storage, which comes with clear boundaries. Our message
here is this: as a rule of thumb, first, always try to plan the consistency model that you
need before you choose between a SQL or NoSQL store. Of course, for heavily relational
data, you should default to a SQL engine, and Azure SQL is probably the best fit in Azure.

Now that we have reminded you of what is important when choosing a database engine,
let's discuss where Cosmos DB shines with some of our CLOUD DESIGN PATTERNS,
that is, our second top-level group.

Zooming in on cloud design patterns
To be able to build cloud and cloud-native apps, you need to understand their underlying
design patterns. In this section, we will tackle the most frequently used ones. The design
patterns depicted in this map (see Figure 5.5) do not uniquely belong to the cloud world
because you can also apply most of them to on-premises hosted apps. They just belong to
modern development techniques, and, as we explained before, cloud-native applications
are modern by design:

Figure 5.5 – Cloud design patterns

Exploring the Azure Application Architecture Map 187

Important note
To see the full Cloud Design Patterns map (Figure 5.5), you can download
the PDF file here: https://github.com/PacktPublishing/
The-Azure-Cloud-Native-Architecture-Mapbook/
blob/master/Chapter05/maps/Azure%20Application%20
Architect%20%20-%20Cloud%20Design%20Paterns.pdf.

In this section, we will only briefly describe some patterns. Sometimes, we'll spend a
bit more time to review a pattern deeper, and we'll link it to Azure and/or K8s services.
The associations we make between a given pattern and a service is by no means the only
possible option, but we just want to demonstrate how you can use some Azure services
to your advantage for certain patterns. Let's start with a very popular pattern, namely,
Command Query Responsibility Segregation (CQRS).

Using Cosmos DB with CQRS
Figure 5.6 illustrates some Azure options that can help you to deal with the CQRS
design pattern:

Figure 5.6 – Azure services and CQRS

In a nutshell, CQRS is a pattern that segregates commands (writes) and queries (reads).
The rationale behind this is to increase speed and scalability for both write and read
operations, and also to reduce the pressure on the datastore by splitting write data
from read data into different datastores (or partitions). In this way, potentially heavy
read operations do not impact the write performance and vice versa. As you might
have guessed already, working with different datastores automatically implies eventual
consistency. That is one of the reasons why Cosmos DB and CQRS go well together.
Another reason is that CQRS will force you to properly design your Cosmos database.
The performance of your Cosmos DB is dramatically impacted by the following factors:

• Logical partitions

• Evenly distributed data

• Cross-partition queries

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/maps/Azure%20Application%20Architect%20%20-%20Cloud%20Design%20Paterns.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/maps/Azure%20Application%20Architect%20%20-%20Cloud%20Design%20Paterns.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/maps/Azure%20Application%20Architect%20%20-%20Cloud%20Design%20Paterns.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/maps/Azure%20Application%20Architect%20%20-%20Cloud%20Design%20Paterns.pdf

188 Application Architecture

Cosmos DB can potentially scale indefinitely if the preceding factors are well thought
out, and CQRS will help you to keep them under control. Everything is organized around
logical partitions, which, in turn, use physical partitions. While we cannot access the
physical layer, which is controlled by Microsoft, we can control the logical layer. Logical
partitions are created according to the number of partition key values. If we have 10 books
in a collection, and we use the ISBN number as the partition key value, we will end up
with 10 different logical partitions with one book each. If we have 10 books, but we decide
to choose the author as the partition key, we might end up with 5 different partitions.

A unique value will guarantee an even distribution of the data, but it might not be very
query efficient. For example, taking the ISBN number as a partition key but creating
reports of books per author will lead to systematic cross-partition queries that will affect
costs and performance. On the other hand, very unbalanced logical partition sizes will
also have an impact on performance. Another factor to consider is the maximum size of a
single logical partition, which is, at the time of writing, 20 GB.

With CQRS, you will be forced to think about your command and query needs upfront,
which will then help you to design the Cosmos DB collections and partition keys that you
would like to use. Your write operations will target one or more collections, while your
query needs might be projected using materialized views. Figure 5.7 shows a simplified
CQRS implementation with Cosmos DB:

Figure 5.7 – CQRS and materialized views in Cosmos DB

Exploring the Azure Application Architecture Map 189

You may have one or more write collections, working with different partition keys, and
plenty of different materialized views that satisfy your query needs and that have their
own dedicated throughput. To create the materialized views, you may rely on Cosmos
DB's built-in change feed, which is a persistent record of changes happening in the
collections. The change feed can be consumed in parallel by Azure Functions, or any
other handler, through the change feed processor, to build multiple materialized views
from the same initial change.

Materialized views are then consumed by presentation layers through query handlers.
Keep in mind that CQRS represents an extra complexity, compared to the traditional
way of working with SQL databases. So, again, make sure it is applicable to your use
case. CQRS might be achieved completely differently, but Cosmos DB might help in that
matter. You can also perfectly apply CQRS with Azure SQL, but this will surely be a bit
harder to achieve. Note that, independently of the full pattern implementation, you can
easily segregate reads and writes by leveraging Azure SQL's read replica feature. This is
by no means CQRS per se, but the physical segregation of reads and writes will help you
to realize some of the benefits of CQRS (in terms of performance and scalability) without
any effort required on the programming side. You can read more about read replicas
at https://docs.microsoft.com/azure/azure-sql/database/read-
scale-out.

Now, let's look at another pattern that is also sometimes used in conjunction with CQRS,
namely, Event Sourcing.

Using Cosmos DB with Event Sourcing
Event Sourcing is another popular design pattern. With Event Sourcing, all the events are
stored in an event store and published for consumption to build materialized views:

Figure 5.8 – Azure services and the Event Sourcing pattern

https://docs.microsoft.com/azure/azure-sql/database/read-scale-out
https://docs.microsoft.com/azure/azure-sql/database/read-scale-out

190 Application Architecture

So, here again, writes and reads are separated, but the pursued objective differs since
the primary purpose of Event Sourcing is the audit trail and extreme scalability. Since
events are immutable, we can understand the full history of the data at any point in time.
Even better, we can rebuild the actual data state by replaying events from the event store.
Cosmos DB's change feed comes in handy because you can use a collection to store the
actual events and rely on the change feed to be notified, as well as replay them from any
point in time. The change feed persists all the events and restores all of them as they
happened. Figure 5.9 shows how event sourcing can be tackled with Cosmos DB:

Figure 5.9 – Event Sourcing with Cosmos DB

Exploring the Azure Application Architecture Map 191

At first sight, Figure 5.9 looks very similar to Figure 5.7. Indeed, we reuse the same
components as before. However, this time, instead of storing data into the write collections,
we simply store events as they happened. The change feed is used to fulfill two duties:

• Build the materialized views, as we did with CQRS

• Possibly reconstruct the state of the data by replaying events

To publish events, you may also rely on Event Hub and Event Grid. These two options
may help you to reach out to non-Azure parties. Event Hub is traditionally used for
big data, while Event Grid is used for discrete events; however, both work in an Event
Sourcing architecture. Choosing one or the other will also depend on the consumer
capabilities. To accomplish this, you might have a separate Azure function that publishes
the events to either of these services or to both. It's relatively simple to consume Cosmos
DB's change feed with Azure Functions in order to build materialized views. You can view
a concrete implementation at https://github.com/Azure-Samples/cosmosdb-
materialized-views/tree/master/materialized-view-processor.
Replaying all the events stored in the event store should be done through the change
feed processor. Here is an example for illustration purposes. The following method
demonstrates how you can replay all the events since the beginning of the event store:

private static async Task<ChangeFeedProcessor>
ReplayChangeFeed(CosmosClient cosmosClient)

{

 string databaseName = "packt";

 string sourceContainerName = "events";

 string leaseContainerName = "replay";

 Container leaseContainer = cosmosClient.GetContainer(
 databaseName, leaseContainerName);

 ChangeFeedProcessor changeFeedProcessor =
 cosmosClient.GetContainer(
 databaseName, sourceContainerName)

 .GetChangeFeedProcessorBuilder<Event>(a
 processorName: "replay", HandleChangesAsync)

 .WithInstanceName("replayservice")

 .WithLeaseContainer(leaseContainer)

 .WithStartTime(DateTime.MinValue.ToUniversalTime())

 .Build();

https://github.com/Azure-Samples/cosmosdb-materialized-views/tree/master/materialized-view-processor
https://github.com/Azure-Samples/cosmosdb-materialized-views/tree/master/materialized-view-processor

192 Application Architecture

 await changeFeedProcessor.StartAsync();

 return changeFeedProcessor;

}

Here, we tell the processor library that we want to restart from the very beginning using
the .WithStartTime method. Changes are all sent to the HandleChangesAsync
method. Here is its implementation:

static async Task HandleChanges(
 IReadOnlyCollection<Event> changes, CancellationToken
 cancellationToken)

{

 foreach (Event ev in changes)

 {

 Console.WriteLine($"Detected operation for item
 with id {ev.id}");

 await Task.Delay(10);

 }

}

Changes are sent in batches and can be handled. In our example, we simply write the
event identifier to the console. This code sample was simply to show you how trivial it can
be to inspect the event store.

It is worth mentioning that both Event Sourcing and CQRS are often associated with a
broader architectural approach, namely, Domain-Driven Design (DDD). DDD consists
of identifying business domains. We will tackle its vocabulary (ubiquitous language) and
some bounded contexts later on in the Developing microservices section. However, before
we get there, let's look at some purely cloud-native patterns.

Exploring the Azure Application Architecture Map 193

Dealing with cloud-native patterns
Figure 5.10 shows a few recurrent cloud-native patterns and how Azure or K8s (through
Azure AKS) can help tackle them:

Figure 5.10 – Azure, K8s, and cloud-native design patterns

In DDD, the notion of an ANTI-CORRUPTION LAYER refers to the capacity of
integrating different systems that do not speak the same language. Hence, there is a
risk of corrupting a domain if no specific action is undertaken. This may happen when
integrating legacy and newer systems together and, sometimes, even across new systems.
Domain corruption could also come from the fact that we are ruled by a broader system
that cannot be changed, such as an SaaS platform.

There are numerous reasons why an anti-corruption layer may be required at some point
in time. Azure Logic Apps can play an interesting role in that matter by applying data
mapping and transformations across systems. Azure Logic Apps has hundreds of built-in
connectors, which can be extended by custom connectors.

194 Application Architecture

The Ambassador and the Circuit Breaker (CB) are also cloud-native patterns. It comes
as no surprise that Azure has no built-in service to help implement them. The CB
pattern is often necessary when dealing with microservices architectures, where services
can be quite chatty. Sometimes, these round trips among services may lead to network
exhaustion if the retry mechanism is not kept under control. The difference between a
simple retry mechanism and a CB is that the CB will stop retrying precisely to prevent
network saturation, and it will maintain a state to know when to retry and when not to
retry. A direct benefit of implementing it is that your application should be able to survive
with the unavailability of some services, forcing you to anticipate service unavailability,
from a functional perspective. Azure itself does not have anything, but the Polly code
library (https://github.com/App-vNext/Polly/wiki/Circuit-Breaker)
comes to the rescue. In the K8s world, you can count on Istio to do the job, since Istio, like
other service meshes that we covered in Chapter 3, Infrastructure Architecture, implements
the Ambassador pattern through a sidecar proxy to perform network-related activities.
Figure 5.11 represents the Ambassador pattern:

Figure 5.11 – The Ambassador pattern

At the time of writing, only Istio has a true built-in CB, while LinkerD exposes some
simpler retry policies.

https://github.com/App-vNext/Polly/wiki/Circuit-Breaker

Exploring the Azure Application Architecture Map 195

The Cache-Aside pattern could have been put in the COMMODITIES top-level group,
because many applications require some caching mechanisms. However, the reason
why we put it inside the CLOUD DESIGN PATTERNS group is to stress, once more,
how caching should be implemented in the cloud, and even more in cloud-native apps.
The scaling story in the cloud is a scale-out story. This means that we're multiplying the
number of instances rather than increasing the CPU and memory (which is scaling up).
The Cache-Aside pattern should then be implemented with a distributed cache system,
such as Azure Redis Cache, to prevent in-process cache and inconsistencies across
process instances. Figure 5.12 is a representation of the Cache-Aside pattern:

Figure 5.12 – The Cache-Aside pattern

The code checks whether a given value is in the cache or not. If it's not in the cache, it goes
to the datastore and updates the cache for future use. If the item is already in the cache, it
does not reach out to the datastore. The purpose of the Cache-Aside pattern is to improve
performance. Azure Redis Cache is fully managed and allows you to achieve advanced
scenarios, such as geo-distributed applications. Let's now explore some API patterns.

196 Application Architecture

Tackling API patterns
APIs are a modern method for integrating systems and exposing some services to client
applications. Therefore, it is important to understand some associated patterns, as shown
in Figure 5.13:

Figure 5.13 – Azure and the API-related patterns

In Azure API Management, the API gateway and its policy engine help to deal with the
following gateway-related patterns:

• Gateway Aggregation: This pattern facilitates the life of the consumer by aggregating
multiple backend sources together. It may also be used as a proxy for some devices
with poor (or sometimes poor) network latency, such as mobile and Internet of
Things (IoT) devices. The idea is to have the API gateway closer to both the consumer
and backend services, while letting the client call a single endpoint and allowing the
gateway to aggregate multiple calls to the backend on behalf of the client.

• Gateway Routing: Here, the purpose is to again make the life of the API consumer
easy. This time, we do not aggregate multiple calls to backend services, but we hide
those backend services. Our API gateway is an abstraction layer between the client
and the backends. The gateway routes a request to the relevant backend according to
the incoming HTTP request (for example, the headers, API version, and more).

• Gateway Offloading: This pattern consists of offloading cross-cutting concerns to
the gateway instead of writing everything in code. Typical duties involve certificate
management, authentication, monitoring, and throttling. The idea is to block any
illegal request at the level of the gateway instead of letting it flow to the backend
service. In the 21st century, it is not possible to handle all these things in code. Note
that the gateway could also terminate SSL connections. This can be useful as a proxy
to old legacy services that are not always encrypted.

Exploring the Azure Application Architecture Map 197

• Backends for Frontends: Different frontends may have different needs. For
instance, a mobile device might display less information than a web browser on
a laptop. Having a single backend service to serve multiple frontends may be
challenging at some points since frontend needs might be conflicting. Ideally,
you should implement one backend per frontend, but you may perform some
light transformations at the gateway level according to the calling client through
outbound policies. This should remain light so as to avoid setting business logic at
the level of the gateway. A typical transformation could be the response conversion
from XML to JSON.

Figure 5.14 shows how Azure API Management, which encompasses the API gateway,
helps you to implement the aforementioned patterns:

Figure 5.14 – Gateway-related patterns

198 Application Architecture

Needless to say, Azure API Management can also be used to expose APIs to external
parties. It is even the primary use case. When exposing functionality to third parties, we
want to make sure that we hide internal implementation details. Most of the time, the API
gateway sits in front of custom-developed backend services, but it may also proxy other
Azure services, such as Azure Functions and Azure Logic Apps. The consumer experience
is unified, but the backend implementations may be very diverse.

For long-running operations, you may also leverage Azure Durable Functions. They
have a built-in support of asynchronous APIs. Figure 5.15 illustrates what asynchronous
APIs are:

Figure 5.15 – Asynchronous APIs

When the client application calls the function endpoint, it gets a 202 (accepted) response
with a URL in the response headers, which can be used to obtain the status. In the
meantime, the task execution starts, involving one or more functions. Unlike ordinary
functions, the overall process of durable functions is not limited in duration.

Understanding the SAGA pattern
The SAGA pattern deals with distributed transactions. This means that there are multiple
participants who contribute to the same overall transaction. In the ACID world, a
transaction is an atomic group of operations. They all succeed, or they all fail. This works
well with monoliths when a single backend writes to a SQL database. With microservices,
the segmentation and segregation of duties across services themselves causes the
transactions to be distributed by design. Additionally, most of the time, each service has
its own datastore, which sometimes does not even support single transactions. The ACID
way of working is, therefore, not applicable with true microservices architectures.

Exploring the Azure Application Architecture Map 199

Additionally, cloud and cloud-native implementations often rely on serverless systems,
such as Logic Apps, that do not even understand the concept of a transaction. So, if you
cannot use database-level transactions, you have to rely on a different mechanism, such
as the SAGA pattern. Unlike ACID, SAGA cannot simply roll back the whole transaction
because of one failed operation, but instead it introduces the concept of compensating
transactions. Local transactions committed by local services are already persisted to
their own datastore. In the case of a failure of one of the participants, the mechanism of
compensating transactions should make them invalidate what was committed.

SAGA is an orchestrator-based or choreography-based pattern. Figure 5.16 represents the
orchestrator pattern:

Figure 5.16 – The SAGA orchestrator-based pattern

An orchestrator is the driving seat and orchestrates the different participants that are
part of a transaction. Each service is unaware of what other services do and only the
orchestrator knows the actual state of the ongoing transaction. If one of the local steps
fails, the orchestrator will trigger one or more compensating transactions to invalidate the
preceding steps.

200 Application Architecture

In a choreography, as shown in Figure 5.17, services are bridged together with a pub/sub
mechanism, where each service publishes its outcomes (that is, a success or a failure) that
one or more subscribers capture, and, in turn, it publishes events about the outcome of its
local activities:

Figure 5.17 – The SAGA choreography-based pattern

If one of the participants fails, it will publish its failure event, which will be captured by the
others to invalidate their local transaction. However, the choreography pattern might make
it harder to understand the full picture if a single transaction involves many participants.

In Azure, the choreography pattern must use a message broker (such as Azure Service
Bus, Azure Event Grid, or Azure Event Hub) to enable participants to publish and receive
messages and events.

The orchestrator may use them, but it is not forced to do so. For example, we can use
Azure Durable Functions to let it manage its own local state in Azure Storage and
coordinate the different participants of a distributed transaction. They can reach back out
through HTTP, through a bus, or through any supported Azure Functions binding, among
which is Azure Event Hub. Microsoft has published a nice SAGA orchestration example
on GitHub: https://github.com/Azure-Samples/saga-orchestration-
serverless.

Now that we have reviewed the typical cloud design patterns, let's go through a few
common requirements.

https://github.com/Azure-Samples/saga-orchestration-serverless
https://github.com/Azure-Samples/saga-orchestration-serverless

Exploring the Azure Application Architecture Map 201

Understanding the COMMODITIES top-level group
Our COMMODITIES top-level group, which is part of our Azure Application
Architecture Map, deals with common requirements (see Figure 5.18):

Figure 5.18 – The COMMODITIES top-level group

One of the requirements includes authentication (AuthN) and authorization (AuthZ),
which, in Azure, often translates to Azure Active Directory (AAD) and Azure B2C.
While AAD is mostly used to authenticate internal collaborators, it can also be used in
B2B scenarios. Azure B2C is used to authenticate lambda users (that is, ordinary people
like you and me) with their social identities or by letting them create an account in our
B2C directory. However, both AAD and Azure B2C can also act as authorization servers
and are fully compatible with OpenID Connect. We will explore this further in Chapter
7, Security Architecture. Just note for now that as an application architect, you will be
interested in MSAL (Microsoft Authentication Library), which is a code library that can
be used for all kinds of authentication and authorization scenarios with both AAD and
Azure B2C.

Many applications also allow users to search for information. When dealing with a
simple use case (for example, building a search UI), calling data services that implement
OData might be enough. However, as the amount of data grows, the simple OData
implementation might not scale accordingly. That is where a fully managed search service,
such as Azure Cognitive Search (ACS), comes in handy. ACS lets you define real-time
indexes and has built-in AI capabilities such as OCR, translation, text analytics, and
more. Azure Cognitive Search integrates with the other cognitive services. For any mobile
application, Visual Studio App Center is your friend, because it integrates with source
code repositories and makes it easy to build and deploy iOS and Android apps whatever
source code (for example, Xamarin, React Native, and more) is used.

202 Application Architecture

Background tasks, such as scheduled and triggered jobs, can be handled with Azure
Functions. You should always default to functions with one exception (continuous jobs),
for which you need to use Azure App Service WebJobs.

For hybrid applications (with a part of the application in the cloud and another one
on-premises), you should leverage your hybrid infrastructure setup, which we discussed
in Chapter 3, Infrastructure Architecture. However, if you do not have such a setup, you
can always fall back on Hybrid Connections and the Azure Relay pattern. They both
allow you to bridge cloud-based components with on-premises components without
the need of establishing private connectivity. Both Hybrid Connections and Azure
Relay rely on internet connectivity, and they both require outbound connectivity only.
Hybrid Connections come in two flavors, that is, with the Hybrid Connection Manager
for databases and as a custom developed endpoint through a modernized Azure Relay
approach. Azure Relay used to rely on Windows Communication Foundation (WCF),
and, while it is still possible to use WCF, it is not advised for new applications.

For near real-time web applications, you can use Azure SignalR, which is simply a
SignalR server managed by Microsoft. SignalR is not new in the .NET space and is based
on WebSocket. The WebSocket API became mainstream with the arrival of HTML5. The
purpose of WebSocket is to reuse the same HTTP connection between a browser and
a web server across requests. It also uses frames instead of plain HTTP headers, which
minimizes verbosity, and, therefore, the footprint of each request. The server needs to be
WebSocket compliant, and that is what Azure SignalR does for you.

Now, let's explore some typical messaging and event-driven application patterns.

Developing applications with EDA/messaging-related patterns
Figure 5.19 shows the Azure services that help you to deal with most
EDA/messaging-related patterns:

Figure 5.19 – Azure and EDA/messaging patterns

Exploring the Azure Application Architecture Map 203

Although we do not embed EDA/messaging-specific details in this map, they support
many design patterns, namely, the Queue-Based Load Leveling, the Competing
Consumer, and the Claim-Check patterns. Most of these patterns enable asynchronous
communication between services (for example, across bounded contexts in a
microservices world), and they improve your solution's overall scalability and parallel
processing. Figure 5.20 shows the queue-based load leveling pattern:

Figure 5.20 – The Queue-Based Load Leveling pattern

Both Azure Service Bus and Storage queues can be used as a messaging layer. The dotted
line on the right-hand side (labelled DON'T) represents a direct connection between a
writer and the database. In highly scalable systems, this should not be done, because the
writers might quickly be throttled by the database system and/or exhaust it. The queues
serve as a contention mechanism that lets the handlers poll messages as their own pace,
in an asynchronous way. The Competing Consumer pattern is just a variant that makes
use of multiple handlers against the same queue, in order to increase the speed of message
handling. Note that nowadays, it is more common to have pub/sub implementations with
topics and subscriptions instead of mere queues.

204 Application Architecture

The Claim-Check pattern is also a variant of the Queue-Based Load Leveling pattern
and is used when the size of a message is too large. For example, the maximum size of
a message in Azure Service Bus is 1 MB for the Premium tier. In such a case, instead of
sending the actual message payload to the bus, you place it in Blob storage (or any other
datastore) and queue a claim-check as a message to the bus. The receiver can then pull the
payload from the Blob storage.

Now that we have browsed some common patterns, and more specifically event and
message-based patterns, let's go through a more concrete example of using EDA to
our advantage.

Exploring EDAs
In this section, we will dive into the EDA world in a more concrete way. Our objective is
to make you familiar with some of the Azure services that help build EDA solutions. By
the end of this section, you will understand the basics of Azure Service Bus, Azure Event
Hub, and real-time processing with Stream Analytics.

In Chapter 2, Solution Architecture, we described and explained the EDA map, as shown in
Figure 5.21:

Figure 5.21 – The EDA map

Exploring EDAs 205

Instead of re-explaining what we have already discussed, let's add some messaging and event
capabilities to the application that we developed in Chapter 2, Solution Architecture, in the
Solution architecture use case section. As a reminder, the initial scenario was the following:

Contoso needs a configurable workflow tool that allows you to orchestrate multiple resource-
intensive tasks. Each task must launch large datasets to perform in-memory calculations. For
some reason, the datasets cannot be grouped into smaller pieces, which means that memory
contention could quickly become an issue under a high load. A single task may take between
a few minutes to an hour to complete. Workflows are completely unattended (that is, there is
no human interaction) and asynchronous. The business needs a way to check the workflow
status and to be notified upon completion. Additionally, the solution must be portable.
Contoso's main technology stack is .NET Core. Of course, this should have been done
beforehand, and there is not much budget allocated to the project.

We ended up building the solution that's shown in Figure 5.22:

Figure 5.22 – Reference architecture for our solution architecture use case

206 Application Architecture

It appears that Contoso was a bit too quick when launching their workflow system. They
realized that it is hard for them to have complete oversight of the ongoing orchestrations;
they would like to have a real-time status view. They can easily check the status of a given
orchestration, but they do not want to do that one by one. They also noticed that they
focused too much on the larger datasets and forgot that they also had to deal with smaller
datasets. While the current solution is perfectly capable of handling the smaller ones,
users complained about the startup delay encountered by the container instances. So, they
urged both the solutions architect and the application architect to solve these problems.
Our scenario remains unchanged, except for the following:

• We must have global oversight of the ongoing orchestrations.

• The ACI startup delay is not acceptable for smaller datasets, so we have to find
an alternative.

Nevertheless, our main goals remain unchanged, as we still need to have a cost-friendly
solution, while also dealing with large datasets (that is, the majority of our datasets). In
light of these new requirements, the architects come to the following conclusions:

• The ACIs are still the best option for the larger datasets and are cost friendly.

• Working with pre-provisioned smaller ACIs will prevent the startup delay you
encounter when you provision ACIs dynamically. Of course, pre-provisioned ACIs
will impact costs.

• The orchestrator and the ACIs are too tightly coupled. Since the system will rely
on both dynamic and pre-provisioned ACIs, you need something in between to
coordinate the orchestrator steps and the ACI activity. Moreover, we need to find
a way to route small volumes to pre-provisioned ACIs while still creating dynamic
ACIs for the larger ones. A message broker, such as Azure Service Bus, should be
added to the mix.

• We already have a way to check the individual orchestration status, but it is reactive
and not near-real time. Therefore, we need a way to publish the orchestration status,
so we will use Azure Event Hub. However, we also need something to pick up those
events and reflect them onto a monitoring dashboard. So, we will add Azure Stream
Analytics to the mix, as well as real-time Power BI Dashboards.

Exploring EDAs 207

Here, we end up with a few extra services, and that will probably also have an impact on
our code. Remember that in the previous design, all ACIs were provisioned dynamically
and destroyed after use. Now, we will have to deal with pre-provisioned ACIs, meaning
that our code will keep running all the time. In such a situation, we want to make sure
that we deal correctly with thread safety and memory leaks to prevent crashes of our
pre-provisioned ACIs. The fact that we were only working with temporary ACIs could have
hidden some code-related issues of that nature. Moreover, by adding Service Bus in the
middle, our retry and timeout mechanisms should be reviewed. The application architect
reworked the previous solution diagram and delivered something similar to Figure 5.23:

Figure 5.23 – The revisited Contoso architecture

208 Application Architecture

This diagram, as well as the other diagrams, are available as a Visio document on
GitHub at https://github.com/PacktPublishing/The-Azure-Cloud-
Native-Architecture-Mapbook/blob/master/Chapter05/diagrams/
diagrams.vsdx.

The flow is as follows:

• For each orchestration step, we determine whether the step targets a small or large
dataset. We queue a message to a Service Bus topic with the metadata property
set accordingly.

• We have three separate Service Bus subscriptions for our topic:

a) The first subscription only receives messages for which the large property was set
to true (large datasets). When received, it provisions a new ACI.

b) The second subscription also receives all the messages for which large was set
to true. The newly provisioned ACI receives its subscription details as an
environment variable.

c) The third subscription receives all the messages for which large was set to false
(that is, the small datasets). This will feed the pre-provisioned ACIs.

• All ACIs, including any dynamic ones, will be in a competing consumers pattern,
meaning that the first one to detect the message will pick it up, lock it (that is, hide
it from others), and dequeue it upon successful completion. Under a high load, even
the dynamically provisioned ACIs may handle a message other than the one they
were initially provisioned for. The order of the steps is ensured by the orchestrator,
so we do not have to use Service Bus sessions.

• As before, dynamic ACIs have to be destroyed after use (for cost reasons). So, they
will queue a message to a specific topic when they are ready for deletion. Specific
logic must be ensured so that the ACI is not destroyed while it is processing a
message. A specific ACI removal subscription will be listing to all ACIs that are to
be destroyed, and this will be handled by an Azure function through the Azure
Resource Manager API (which we saw in Chapter 4, Infrastructure Deployment).

• Upon completion of each step, whether successful or failed, the orchestrator will
publish the step outcome to Azure Event Hub. Azure Stream Analytics will pick it
up and push it to a real-time Power BI Dashboard.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/diagrams/diagrams.vsdx
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/diagrams/diagrams.vsdx
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter05/diagrams/diagrams.vsdx

Exploring EDAs 209

• A number of extra timing constraints must also be considered. We need to make
sure that we set the time-to-live (TTL) of the Service Bus message to the value of
the step timeout in order to let the bus dequeue outdated messages. The message
body will also contain the step timeout information. For the sake of precaution,
every message handler will double-check that the message it reads is not expired
yet. (Sometimes, it can be a question of milliseconds.) Even more importantly, the
message handler must make sure that it recalculates a new timeout before it handles
the message. Indeed, an orchestration step might time-out in 3 minutes, but by the
time we process it, we might go over the initial 3 minutes, which would lead us to
a weird situation where the orchestrator would time out while the step was being
handled. To avoid this situation, the handler needs to recalculate whether or not it
has enough time to process the message before the orchestrator timeout kicks in.

• Like before, Blob storage accounts are used as input/output for our ACI activity.

Figure 5.24 is a concise view of this flow:

Figure 5.24 – Contoso orchestration flow

Notice the numbers in the diagram that indicate the sequence.

For the sake of brevity, we are not going to go through all of the steps to get this up and
running because it is beyond the scope of the book. In the next subsections, we will only
highlight the important changes, compared to the previous solution. Next, let's take a look
at the Service Bus configuration.

210 Application Architecture

Inspecting the Azure Service Bus configuration
Figure 5.25 shows our datasets topic, which receives messages directly from the
orchestrator:

Figure 5.25 – Service Bus topic

There's nothing special about the topic; it is just a regular topic. It has three subscriptions
(as shown in Figure 5.26):

Figure 5.26 – Topic subscriptions

Remember that these subscriptions have some filters applied. Figure 5.27 shows the
aci-large subscription, which is there to provision dynamic ACIs for large datasets:

Exploring EDAs 211

Figure 5.27 – Configuration of the aci-large subscription

As you can see, the SQL filter, large=true, is set. This means that Azure Service Bus
will send a copy of each message for which large was set to true. There are a few other
interesting parameters here, as follows:

• Max delivery count: This is set to 1. It means that Azure Service Bus will only try to
deliver a message once. It is a question of choice here. Either we let Service Bus retry
for us, or we let the orchestrator retry. With the max delivery count set to 1, we let
the orchestrator retry it. The rationale here is to put the orchestrator in the driver
seat, as it is ultimately responsible of the overall orchestration.

• Message time to live: This is set to a very improbable default value. Remember
that we want the TTL to be equal to the step timeout, which is unknown at the
subscription creation time. Rest assured, we can specify the TTL while queuing
a message.

• Message lock duration: Here, we specified 5 minutes, which should be more than
enough time to provision an ACI. 5 minutes is the maximum duration that we can
specify. However, the Service Bus SDK offers some ways to renew the lock, should
our operation last longer.

• Auto-delete: This is set to NEVER. We prefer to dead-letter every expired or
invalid message.

212 Application Architecture

Azure Service Bus, just like many message brokers, has this notion of dead-letter
queue (DLQ). The DLQ is particularly useful because every message ending there is
the symptom of a problem. A message could be malformed, expired, or cause filter
exceptions. It is important to keep an eye on the DLQ to track down issues. Note that
Azure Service Bus configuration can be done entirely programmatically, thanks to
the ManagementClient class. The following code shows how to create our three
subscriptions through code, from a console program, using this class. Note that this code
is just for illustration purposes, which is why we do not add a dependency injection (and
so on) into the mix. First, the following is our main method:

static async Task Main(string[] args)

{

 const string Topic = "datasets";

 ManagementClient mgt = new ManagementClient(
 "connection string");

 try

 {

 await CreateSubscription(mgt, Topic, "aci-large",
 5, new SqlFilter("large = true"));

 await CreateSubscription(mgt, Topic,
 "ds-smallmedium", 5, new SqlFilter(
 "large = false"));

 await CreateSubscription(mgt, Topic, "ds-large",
 5, new SqlFilter("large = true"));

 }

 catch(Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 await mgt.CloseAsync();

 }

}

Exploring EDAs 213

We use the ManagementClient class from the Service Bus .NET Core SDK, and we call
the CreateSubscription method three times. Its implementation is as follows:

static async Task CreateSubscription

 (ManagementClient mgt,

 string Topic,

 string SubscriptionName,

 int LockDuration,

 SqlFilter filter=null){

 var sub=await mgt.CreateSubscriptionAsync(

 new SubscriptionDescription(Topic, SubscriptionName),

 (filter != null) ?

 new RuleDescription{

 Name = string.Concat(SubscriptionName,"-filter"),

 Filter = filter

 }:null

);

 sub.MaxDeliveryCount = 1;

 sub.LockDuration = new TimeSpan(0, 5, 0);

 await mgt.UpdateSubscriptionAsync(sub);

}

This method simply adds the new subscription to our Service Bus instance, with some
default values and the filter rule, if any.

Our orchestrator will publish messages to the topic with the following activity function:

[FunctionName(nameof(PublishMessage))]

[return: ServiceBus("datasets", Connection =
 "ServiceBusConnection")]

public static Task<Message> PublishMessage(

 [ActivityTrigger] IDurableActivityContext context,
 ILogger log)

{

 var payload = context.GetInput<

 OrchestrationStepPayload>();

 var message = new Message

214 Application Architecture

 {

 Body = Encoding.UTF8.GetBytes(

 JsonConvert.SerializeObject(payload)),

 ContentType = @"application/json"

 };

 message.UserProperties.Add(@"large", payload.large);

 return Task.FromResult<Message>(message);

}

Notice how we promote the large attribute onto which subscribers apply a filter.
Our function has a return of type ServiceBus, for which we provide both the topic
and the connection.

Now that our Service Bus plumbing is ready, we also need to add an Azure Event Hub, a
PowerBI dashboard, and a Stream Analytics job in the middle.

Adding the other components to the mix
Since we are only interested in the changes that we added to the previously developed
solution, we are not going to detail all of the steps. Let's only explore the relationships
between the different components. First, we need an event hub. For this, we simply
create an instance of Azure Event Hub. Remember that the orchestrator publishes all its
orchestration events to the Hub. It does so, thanks to the following activity function:

[FunctionName(nameof(PublishEvent))]

public static async Task PublishEvent(

 [ActivityTrigger] IDurableActivityContext context,

 [EventHub("acihub", Connection = "EventHubConnection")]

 IAsyncCollector<string> outputEvents,

 ILogger log)

{

 var data = context.GetInput<OrchestrationData>();

 await outputEvents.AddAsync(

 JsonConvert.SerializeObject (data));

}

Our data object contains the step name and its status. We use an output function binding
of the EventHub type.

Exploring EDAs 215

The service (which will push those events to Power BI) is an instance of Azure Stream
Analytics. We define the event hub as its input and two different Power BI datasets as the
outputs. The job will run the query that's shown in Figure 5.28:

Figure 5.28 – Stream Analytics job query

Our goal is to stream all of the events as they fly on the hub, and then we output them to an
all-in dataset and another dataset that only shows the failed steps/orchestrations. By doing
this, we end up with a near real-time monitoring dashboard, as shown in Figure 5.29:

Figure 5.29 – Near real-time monitoring dashboard

216 Application Architecture

The dashboard reflects what is happening at the level of the orchestrator, and it has a
specific view of the failed steps (it shows as empty in our dashboard). Let's now recap what
we learned from this revamped solution. In Chapter 6, Data Architecture, we will walk you
through a basic scenario that involves Stream Analytics and Power BI.

What we intended to demonstrate is that when you leverage the ecosystem, in this case a
bunch of Azure services, your solution tends to be less code-centric. With the preceding
example, the only real application code sits in the ACIs where the business logic lies. All
the other services we added to the mix play a crucial role, and most of the work consists of
configuring and assembling the services properly. Let's now leverage a different ecosystem
for a microservices architecture example.

Developing microservices
Our objective in this section is to give you a glimpse of developing cloud-native
applications. Microservices are 100% cloud-native par excellence, hence the reason
why we use them to illustrate our purpose. We will not cover the entire spectrum of
microservices, because the topic deserves an entire book on its own. We assume that you
know already what microservices are, and we will focus on some technical bits only.

In Chapter 3, Infrastructure Design, we reviewed the different infrastructure options at our
disposal to host microservices. Our conclusion was that, at the time of writing, in Azure,
AKS is the most suitable choice. We stressed the fact that service meshes play a great
role in terms of the observability, security, deployment, and resilience of a microservices
architecture. We also highlighted some AKS-killing features, such as self-healing, cluster,
and pod auto-scaling, to name a few. All of these infrastructure features help to build
resilient solutions while not reinventing the wheel in the code. Microservices are often
part of a broader DDD approach, which we will not depict in this book. However, to make
a long story short, we ultimately end up with bounded contexts. Eric Evans, the pope of
DDD, defines a bounded context as follows:

"A bounded context is a defined part of software where particular terms,
definitions, and rules apply in a consistent way."

Developing microservices 217

Considering that a bounded context is a microservice is oversimplifying things, but we
can at least say that the physical segregation of services helps to set up clear boundaries
between the different contexts.

If you want to know more about DDD and Eric Evans, you can refer to the following
Packt page: https://hub.packtpub.com/eric-evans-at-domain-driven-
design-europe-2019-explains-the-different-bounded-context-
types-and-their-relation-with-microservices.

Let's focus on the technical aspects. In a nutshell, microservices tend to rely on the
following patterns and technologies:

• Sidecar: The Sidecar pattern is one of the most-used patterns in the container
world. Service meshes themselves leverage this pattern, just like most ecosystem
solutions do.

• PUB/SUB: These establish asynchronous communication between services.

• gRPC and REST HTTP/2-enabled communications: These speed up direct
communications across services.

• API gateways: These expose some services to the outside world.

Let's now inspect a pure code-related ecosystem add-on, namely, Dapr, which we
introduced in Chapter 2, Solution Architecture. Dapr can be used with all of the patterns
and technologies listed in the preceding list.

Using Dapr for microservices
Dapr comes in very handy when dealing with microservices. As a reminder, Dapr is an
application runtime that helps you to work with distributed components. A first release
candidate was rolled out in November 2020. Dapr has a great affinity with microservices
and K8s. Dapr's value proposal is to be an abstraction layer between the application code
and the underlying systems the code interacts with. It totally decouples the code from its
targets and allows you to seamlessly substitute a target for another, without changing a
single line of code.

https://hub.packtpub.com/eric-evans-at-domain-driven-design-europe-2019-explains-the-different-bounded-context-types-and-their-relation-with-microservices
https://hub.packtpub.com/eric-evans-at-domain-driven-design-europe-2019-explains-the-different-bounded-context-types-and-their-relation-with-microservices
https://hub.packtpub.com/eric-evans-at-domain-driven-design-europe-2019-explains-the-different-bounded-context-types-and-their-relation-with-microservices

218 Application Architecture

Dapr deals natively with the technologies and patterns listed in the previous section. Dapr
also works with components, as shown in Figure 5.30:

Figure 5.30 – Dapr components

These components, as illustrated in Figure 5.30, are of the following types:

• SECRETS: Many different secret stores are supported by Dapr. Referencing a secret
in Dapr is nothing more than making an HTTP (or gRPC) query to http://
localhost:3500/v1.0/secrets/{component-name}/{secret-name}.

• PUB/SUB: Dapr supports Azure Event Hub and Service Bus, but also Redis,
RabbitMQ, and more. Publishing a message to a Service Bus topic with Dapr is
nothing more than calling http://localhost:3500/v1.0/publish/
{component-name}/{topic}, while subscribing is achieved with http://
localhost:3500/v1.0/publish/{component-name}/{topic}.

• BINDINGS: Dapr can be bound to many different stores, including Cosmos DB
and Azure Storage, to name a few. As usual, a simple query to http://
localhost:3500/v1.0/bindings/{bind-name} is enough to bind to one
of the supported stores.

Developing microservices 219

• STATE: Dapr can write key/value pairs to all of the supported state stores. This time
you need to target http://localhost:3500/v1.0/state/{component-
name}/{key-name}.

An extra endpoint is provided by Dapr, but it is not represented by components.
Therefore, it is not in our map. This endpoint is as follows:

• INVOKE/{APPLICATION}/METHOD/{METHOD}: This is used to directly
invoke a service from another service.

• INVOKE/WORKFLOWS/METHOD/{WORKFLOW}: This is used to invoke a
workflow. Dapr integrates with Azure Logic Apps to execute self-hosted workflows
while leveraging the power of Logic Apps.

Now, let's introduce the concept of Dapr components.

Understanding Dapr components
Dapr makes use of components to abstract away the various data and message stores that
client applications interact with. Figure 5.31 shows how the Daprd sidecar container reads
the component configuration to eventually target the actual physical stores, such as the
ones represented in our map (see Figure 5.30):

Figure 5.31 – Dapr components

220 Application Architecture

The application code does not know that it is talking to Azure Storage or Amazon S3.
It just talks to one of the endpoints that we discussed in the previous section. It is up to
the sidecar container, named Daprd, to find the relevant component. The benefit of this
approach is a great simplification of the application code, but also a full decoupling of the
application code and the stores it interacts with. Thanks to this architecture, we can easily
switch physical stores by just changing the component configuration, without impacting
the application code. A component looks like the following:

apiVersion: dapr.io/v1alpha1

kind: Component

metadata:

 name: {name}

 namespace: {K8s namespace}

spec:

 type: {component-type}

 metadata:

 - {component-specific}

The K8s custom resource definition is Component, and the metadata varies according
to the type of component. Once deployed to AKS, Dapr will detect its presence upon
starting the sidecar container. Note that for experimental purposes, you can also run Dapr
in standalone mode, without K8s, and that's what we are going to do next. Now that we
have a better understanding of the components, let's find out how to get started with the
application code.

Getting started with Dapr SDKs
The application code only calls the various Dapr endpoints that correspond to the Dapr
components, and that is why Dapr is compatible with any programming language.
However, to keep developers in their comfort zone, Dapr also delivers SDKs. For .NET
Core, Dapr already ships with quite a few SDKs (see Figure 5.32):

Developing microservices 221

Figure 5.32 – Dapr .NET Core SDKs

As you can see, there are multiple packages, including an integration with Azure
Functions. In the next section, we are going to demonstrate a scenario that should help
you to grasp the overall concept.

222 Application Architecture

Looking at our scenario
Before we look at the details, let's look at the broader picture. Figure 5.33 shows you the
application that we are going to build:

Figure 5.33 – A sample microservices application using Dapr

On the left-hand side of our diagram, we have the following three services:

• The ORDER PROCESSING SERVICE receives order requests from two channels.
One is an Azure Service Bus topic, and the other one is a direct HTTP/gRPC
request to a specific endpoint. Whenever the service creates a new order, it will
publish an OrderCreated event to Azure Event Hub. All the pub/sub plumbing is
ensured by using Dapr components. Direct calls to the order processing service are
proxied by the Dapr sidecar.

Developing microservices 223

• The SHIPPING SERVICE is a subscriber of the event hub and will be notified
whenever an order event lands on Azure Event Hub. It will, in turn, call the ORDER
QUERY SERVICE to verify that the order still exists and grab extra details about
that order. It will then start/modify/cancel the shipping process according to the
order event. Direct calls to the query service are proxied by the Dapr sidecar.

• The QUERY SERVICE simply returns the searched order out of its fake in-memory
order array.

With this small example, we already have quite a lot of interactions with multiple
channels: direct invocation and pub/sub.

Let's get started with the actual implementation.

Developing our solution
Now it is time for us to develop our solution! Please review the Technical requirements
section to perform all of the steps depicted in this section. Let's start with the infrastructure,
which is a prerequisite to host our application code.

Deploying the infrastructure
For your convenience, we provided both Bicep and ARM files. They are available at
https://github.com/PacktPublishing/The-Azure-Cloud-Native-
Architecture-Mapbook/tree/master/Chapter05/Code/IaC/.

The Bicep file is for illustration purposes only. You can download the chapter05.json
file and deploy it with the following command:

az deployment group create --resource-group packt --template-
file .\chapter05.json

Make sure that you have a resource group named packt before running the command,
which you can execute with Azure Cloud Shell or Visual Studio Code. Refer to Chapter
4, Infrastructure Deployment, for a refresher on this topic, if needed. Upon deployment,
you will be prompted to provide a namespace value. Use something concise such as your
trigram or a pseudo (one word and no exotic characters). We made sure to concatenate
the provided value with a unique string since public PaaS services must use unique names.
Alternatively, you can create the resources manually with the Azure Portal. For your
information, we require the following services:

• Azure Service Bus

• Azure Event Hub

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter05/Code/IaC/
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter05/Code/IaC/

224 Application Architecture

• Azure Storage, with a container named packt within the Blob storage

Ultimately, you should end up with something similar to what's shown in Figure 5.34:

Figure 5.34 – The resources needed for our scenario

Should you wish to deploy the services manually, make sure that you do the following:

1. Create a blob container, named packt, in the storage account.

2. Create a consumer group, named shipping, in the event hub.

3. Create a Service Bus topic, named dapr, in the Service Bus.

Let's now update our Dapr components with the right connection strings (of our newly
created services).

Updating the Dapr components
For the sake of simplicity, the demo ASP.NET Core application can be downloaded or
cloned from GitHub at https://github.com/PacktPublishing/The-Azure-
Cloud-Native-Architecture-Mapbook/tree/master/Chapter05/code.

Here are the steps to update the components:

1. Locate OrderService/Components/packtsb.yaml and replace
<yourconnectionstring> with the Service Bus connection string, which you
can get the following way:

a) Connect to the Azure Portal and locate your Service Bus instance.

b) View the shared access policies.

c) Copy the primary connection string.

d) Paste the string into the component file.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter05/code
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter05/code

Developing microservices 225

2. Locate OrderService/Components/packteh.yaml and replace
<yourconnectionstring> with the Event Hub connection string, which you
can get the following way:

a) Connect to the Azure Portal and locate your event hub namespace.

b) View the shared access policies.

c) Copy the primary connection string.

d) Paste the string into the component file, and make sure that you leave
;EntityPath=dapreh untouched.

3. For the OrderService/Components/packteh.yaml file, replace
<yoursaname> with the name of your storage account.

4. Locate <yoursakey> and replace it with the primary key of your storage account,
which you can get the following way:

a) Connect to the Azure Portal and locate your storage account.

b) Access the keys.

c) Copy the primary key and replace <yoursakey> with it.
You can copy both the OrderService/Components/packteh.yaml and
OrderService/Components/packtsb.yaml files to the ShippingService/
Components folder to replace the files provided by default. Now we are ready to inspect
the code, and then we will test the solution.

Getting started with the code
In the following subsections, we will highlight the important parts of the code. You do not
need to perform any steps, as they are already part of the provided solution, but we want
to provide some explanations.

Adding Dapr to controllers
In the startup class of each service, we have added Dapr to the controllers in the
following way:

public void ConfigureServices(IServiceCollection services){

 services.AddControllers().AddDapr();

}

226 Application Architecture

This injects both the Dapr sidecar, as well as the Dapr client, into our controllers. For any
service that uses the pub/sub mechanism, we must ask Dapr to map the subscribers to our
topics. This can be done in the Configure method as follows:

app.UseEndpoints(endpoints =>{

 endpoints.MapSubscribeHandler();

 endpoints.MapControllers();

});

For each controller, we can retrieve the Dapr client through the constructor dependency
injection, as shown in the following code:

private readonly DaprClient _dapr;

public OrderController(ILogger<OrderController> logger,
 DaprClient dapr){

 _dapr = dapr;

}

We are good to go with Dapr now. Let's inspect our order processing service.

Inspecting our order processing service
As a reminder, our order processing service is bound to Azure Service Bus and to Azure
Event Hub. On top of it, it has a direct method that can be invoked to create orders. Let's
now explore the three methods involved in the overall process. Let's start with the Service
Bus binding:

[Topic("daprsb", "dapr")]

[HttpPost]

[Route("dapr")]

public async Task<IActionResult> ProcessOrder([FromBody]
 Order order){

 _logger.LogInformation($"Order with id {order.Id}
 processed!");

 await PublishOrderEvent(
 order.Id,OrderEvent.EventType.Created);

 return Ok();

}

Developing microservices 227

We tell Dapr to bind this method to our component, named daprsb, and to subscribe to
the dapr topic. From there on, whenever a message lands on that Service Bus topic, Dapr
will call this method. This is why we also define a route. Upon receipt of a message, we
simulate the creation of the order, and we push the OrderCreated event to our Event
Hub through our PublishOrderEvent method, which comes next:

async Task<IActionResult> PublishOrderEvent(Guid OrderId,
 OrderEvent.EventType type){

 var ev = new OrderEvent{

 id = OrderId,

 name = "OrderEvent",

 type = type

 };

 await _dapr.PublishEventAsync<OrderEvent>(
 "dapreh", "shipping", ev);

 return Ok();

}

Notice the use of Dapr's PublishEventAsync method to publish our event to our
event hub.

Next, we have our HTTP POST method, which we want to use as a second channel to
create the orders:

[HttpPost]

[Route("order")]

public async Task<IActionResult> Order([FromBody] Order
 order){

 _logger.LogInformation($"Order with id {order.Id}
 created!");

 await _dapr.PublishEventAsync<Order>(
 "daprsb", "dapr", order);

 return Ok();

}

Here, we use the route attribute, and we get the Order object in a parameter. We
publish the received order to our Service Bus component. In reality, you should, of course,
make a validation. However, for sake of brevity, we will focus only on the communication
plumbing. Let's inspect our shipping service.

228 Application Architecture

Inspecting our shipping service
Our shipping service subscribes to the Event Hub to be notified whenever order events
land in the hub. If this happens, here is the method that gets triggered:

[Topic("dapreh", "shipping")]

[HttpPost]

[Route("dapr")]

public async Task<IActionResult>

 ProcessOrderEvent([FromBody] OrderEvent ev){

 _logger.LogInformation($"Received new event");

 _logger.LogInformation("{0} {1} {2}", ev.id, ev.name,
 ev.type);

 switch (ev.type){

 case OrderEvent.EventType.Created:

 if (await GetOrder(ev.id)){

 _logger.LogInformation($"Starting shipping
 process for order {ev.id}!");

 }else{

 _logger.LogInformation(
 $"order {ev.id} not found!");

 }

 break;

 case ...

 }

 return Ok();

}

Here again, we use the Topic attribute to tell Dapr to use our dapreh component and
to subscribe to the shipping consumer group. Notice how we manually filter the event
type (Created, Updated, or Deleted). We do this because neither the Event Hub
Dapr component nor Event Hub consumer groups have filtering capabilities. By using the
shipping consumer group, we, of course, reduce the scope of events.

Next comes our GetOrder method, which calls our order query service to double-check
the existence of the order. In reality, you would really perform the shipping with the
order details:

async Task<bool> GetOrder(Guid id){

 HTTPExtension ext = new HTTPExtension();

Developing microservices 229

 ext.Verb = HTTPVerb.Get;

 try{

 await _dapr.InvokeMethodAsync<object, Order>(

 "orderquery",

 id.ToString(), null, ext);

 return true;

 }

 catch (Exception ex){

 if(((Grpc.Core.RpcException)ex.InnerException)
 .StatusCode == Grpc.Core.StatusCode.NotFound)

 return false;

 //else ==> should handle the other cases or rely on

 // retry policies of a service mesh

 }

 return false;

}

Here, we use Dapr's InvokeMethodAsync method to call our orderquery service.
We check whether or not the order exists before we return true or false. Note that all the
traffic for pub/sub and direct service calls are handled over gRPC just by using Dapr,
because Dapr enables both gRPC and HTTP by default. Let's now look at how to test
the code.

Testing our solution
Finally, it's time to test our code! Here are a few steps that are required to test the solution:

1. Open the Packt-Microservices-Dapr solution file with Visual Studio 2019.

2. Build the solution.

3. Open three PowerShell (or DOS) windows. Change the directory of each window
to a corresponding service, for example, C:\Users\steph\OneDrive\
Images\maps\packt\chapter5\Code\Packt-Microservices-Dapr\
OrderService.

4. Run the following: dapr Init.

5. In the order processing window, run the following: dapr run --app-id
order --components-path ./components --app-port 5002
--port 3503 dotnet run.

C:\Users\steph\OneDrive\Images\maps\packt\chapter5\Code\Packt-Microservices-Dapr\OrderService
C:\Users\steph\OneDrive\Images\maps\packt\chapter5\Code\Packt-Microservices-Dapr\OrderService
C:\Users\steph\OneDrive\Images\maps\packt\chapter5\Code\Packt-Microservices-Dapr\OrderService

230 Application Architecture

6. In the shipping service window, run the following: dapr run --app-id
shipping --components-path ./components --app-port 5001
--port 3501 dotnet run.

7. In the order query service, run the following: dapr run --app-id
orderquery --app-port 5000 --port 3500 dotnet run.

8. Open Fiddler (or Postman), as we are now ready to send a new order request to our
order processing service.

If everything goes fine, you should have the three Dapr-enabled services waiting for an
activity, as shown in Figure 5.35:

Figure 5.35 – Our three services are waiting for an activity

Important note
Note that if you encounter an error, it might be due to ports already being used
by other processes on your machine. If this happens, just choose different port
numbers than the ones provided. To find out whether a given port has already
been used or not, you can use the netstat -anoc command.

Now, with Fiddler opened, you can run the following HTTP request (HTTP instead of
gRPC), as shown in Figure 5.36:

Developing microservices 231

Figure 5.36 – Sending a POST request to our order processing service

The HTTP request causes an activity similar to the one shown in Figure 5.37 on the
service side:

Figure 5.37 – The service activity upon the order creation request

232 Application Architecture

Here, we can see that our order processing service created the order message (pushed to
the Service Bus) and then processed it (received from the Service Bus). Once processed, it
published an event to the event hub. The event is captured by our shipping service (Figure
5.37), which, in turn, calls the order query service. All our services have communicated
through the Dapr plumbing. Remember that in our initial diagram (Figure 5.33), we had
an API gateway that was directly sending messages to Azure Service Bus. In the next
section, we will explain how to integrate Dapr with Azure API Management for a zero-
code approach.

Combining Dapr and the API gateway of Azure APIM
As we have previously mentioned, API gateways are an integral part of microservices
architectures. Now, let's walk you through a very simple zero-code scenario that will
leverage Dapr's integration with Azure API Management. Since it involves many different
systems, we know for sure that you will probably not have a lab that is ready to really do
the exercise. This is why the following is not an exercise. We simply want to show you
once more what the ecosystem can do for you. Building the environment to support our
scenario goes way beyond the scope of the book. However, for your information, here is a
list of the systems used in our scenario:

• A K8s cluster: This could be AKS, Minikube, or Docker Desktop's K8s.

• API Management: This is an instance of Azure API Management with a self-
hosted API gateway running on our cluster. More information about self-hosted
API gateways is available at https://docs.microsoft.com/azure/
api-management/api-management-howto-provision-self-hosted-
gateway.

• Dapr: This is installed into our cluster. More information on how to install Dapr on
K8s is available at https://github.com/dapr/cli and, more specifically, in
the Install Dapr on Kubernetes section.

• Azure Service Bus: This is our pub/sub service.

Bear with us, even if you have never worked with these technologies. The goal of this
example is to make you realize the importance of the ecosystem, and to see how fast you
can accomplish more resilient solutions with zero code. Remember that it is your duty as
a modern application architect to not let developers reinvent the wheel in their code. In a
nutshell, we are going to use the self-hosted API gateway together with some Dapr-specific
policies to publish messages to an Azure Service Bus instance.

Our client-facing API will, therefore, not involve any custom code, and it will be more
resilient thanks to the extra precautionary measures that we will take.

https://docs.microsoft.com/azure/api-management/api-management-howto-provision-self-hosted-gateway
https://docs.microsoft.com/azure/api-management/api-management-howto-provision-self-hosted-gateway
https://docs.microsoft.com/azure/api-management/api-management-howto-provision-self-hosted-gateway
https://github.com/dapr/cli

Developing microservices 233

First things first: let's create a new topic for our packtmapbook Service Bus instance
that we mentioned you in the Exploring EDAs section. Please refer to the dapr topic in
Figure 5.38:

Figure 5.38 – Dapr topic

We also created a subscription for this new topic, which subscribes to all the messages (no
filter), as shown in Figure 5.39:

Figure 5.39 – Subscription to all messages from the Dapr topic

We will now create a pub/sub Dapr component with following component file:

apiVersion: dapr.io/v1alpha1

kind: Component

metadata:

 namespace: packt

 name: daprsb

spec:

 type: pubsub.azure.servicebus

 metadata:

 - name: connectionString

 value: Endpoint=sb://packtmapbook..

234 Application Architecture

This Dapr component represents our packtmapbook bus. The connection string is
incomplete in our example, because we do not want to disclose sensitive information.
Note that Dapr components can reference secrets to avoid storing sensitive information
directly in the component file, but let's park this aside because it has no influence on what
we intent to demonstrate.

We will now add this component to our cluster, as shown in Figure 5.40:

Figure 5.40 – Adding the Dapr pub/sub component to K8s

We will start our self-hosted gateway and check that its Dapr sidecar has detected our
component, as shown in Figure 5.41:

Figure 5.41 – Dapr detects our component

So far, so good. Our component, daprsb, has been found. Therefore, our self-hosted
gateway should be able to leverage it. We can create a new API on our Azure API
Management instance to verify this assumption (as shown in Figure 5.42):

Figure 5.42 – A new API

Developing microservices 235

Here, we leave the web service URL empty because we will handle the incoming requests
with our policies.

Let's create a new operation that will be called by our API clients (see Figure 5.43):

Figure 5.43 – A new API operation

Our operation can be targeted through an HTTP POST request against the dapr-demo/
order path. Now, we need to create the policy that will handle our client requests.
Remember that we want to push a message to a Service Bus topic through Dapr. Figure
5.44 shows the policy that we can apply to our operation:

Figure 5.44 – A policy using Dapr

236 Application Architecture

We start with a rate-limit policy to prevent the abuse of our endpoint. We allow a
maximum of 10 calls per minute, per subscriber. Afterward, we use the publish-to-dapr
policy, which targets our daprsb component and the dapr topic. We capture Dapr's
response in the dapr-response variable. In the case of errors, we return the dapr-response
variable if any errors occur. Otherwise, we simply call the default behavior through the
base keyword. We are now ready to test our setup. With Fiddler's Composer tab, we can
try out an HTTP POST request against our endpoint (as shown in Figure 5.45):

Figure 5.45 – An HTTP POST request against our endpoint

Notice that the subscription key (obfuscated here) passed through the Ocp-Apim-
Subscription-Key HTTP header. We pass a dummy JSON payload that represents the
order in the HTTP POST body. Let's check whether our message landed correctly in our
Service Bus topic subscription (see Figure 5.46):

Figure 5.46 – Message landed in the topic subscription

Sure enough, we see our message, which we can extract through the in-portal Service Bus
Explorer. We indeed see our message was received, as shown in Figure 5.47:

Developing microservices 237

Figure 5.47 – Message inspection with Service Bus Explorer

So, we have the API gateway directly sending messages through Dapr to a Service Bus topic
with no code. On top of it, we can take consumption metrics, thanks to the subscription
mechanism of Azure API Management. We could add stronger security controls, such
as JWT validation or Mutual Transport Layer Security (mTLS). We also have our rate-
limiting policy to prevent the abuse of our endpoint, as shown in Figure 5.48:

Figure 5.48 – Rate limiting policy in action

238 Application Architecture

We could also add a few validation controls in the policy, such as parsing the incoming
JSON body before sending it to Service Bus, and then returning a 400 error in the case of
a mismatch. However, we did not do this for the sake of brevity.

Well, what we have achieved is something scalable, secure (we could also add more
policies), and traceable, without a single line of code. It was all done only by leveraging the
ecosystem. We have offloaded everything to off-the-shelf services. This is one more piece
of evidence that the ecosystem prevails in cloud and cloud-native solutions. Because Dapr
will definitely be part of tomorrow's ecosystem, we strongly encourage you to also look at
the following:

• Dapr with Azure Functions: https://github.com/dapr/azure-
functions-extension

• Dapr with Logic Apps: https://github.com/dapr/workflows

Now, let's recap the chapter!

Summary
In this chapter, we reviewed how ecosystems prevail in modern applications. First, we
took a detour to explain cloud and cloud-native development. We then explored our
Azure Application Architecture Map. We zoomed in on the data scenarios and the cloud
design patterns. Next, we explored EDAs and messaging architectures. Finally, we showed
you what it looks like to develop a cloud application with microservices (and you might
have just learned a lot about Dapr).

The time of developers crafting everything in code is over. Understanding and relying on
ecosystems is the best path to build resilient and scalable solutions in a timely fashion.
Professional cloud and cloud-native application architects must step back from the code
and look at the broader picture. The application code should only be considered as a
placeholder for business logic.

The non-functional requirements should never be handled in code anymore. The Azure
and AKS ecosystems must be leveraged to their maximum extent, to maximize the return
of investment in those platforms. With container-based applications and some neutral
frameworks, such as Dapr, application architects can also develop portable solutions.

In the next chapter, Chapter 6, Data Architecture, we will go one step further, toward
functional and non-functional delegation to the cloud provider.

https://github.com/dapr/azure-functions-extension
https://github.com/dapr/azure-functions-extension
https://github.com/dapr/workflows

6
Data Architecture

In this chapter, we explore how data is processed and stored. We will look at specialized
data stores that are uniquely tailored to each dataset and purpose. We will explore
traditional Relational Database Management System (RDBMS) workloads, as well as
modern big data solutions.

We will more specifically cover the following topics:

• Looking at the data architecture map

• Analyzing traditional data practices

• Delving into non-traditional data services

• Diving into big data and AI services

• Getting our hands dirty with a near real-time data streaming use case

This chapter will provide you with a detailed understanding of different data services
and a good overview of big data and Artificial Intelligence (AI). You will also gain some
hands-on experience of how to process data in real time with Azure.

Let's now review the technical requirements.

240 Data Architecture

Technical requirements
If you want to practice the explanations provided in this chapter, you will need
the following:

• An Azure subscription: To create your free Azure account, follow the steps
explained at https://azure.microsoft.com/free/.

• A Power BI workspace (with a Power BI Pro license): To create a free Power
BI account, follow the steps explained at https://app.powerbi.com/
signupredirect?pbi_source=web.

• A shell system: This could be DOS, PowerShell, or even Bash on Linux. This is
required to run the executable .NET Core app that we have built for you toward
the end of this chapter. We will provide explanations on how to start the application
with DOS.

All the code and maps (in full size) used in this chapter are available at
https://github.com/PacktPublishing/The-Azure-Cloud-Native-
Architecture-Mapbook/tree/master/Chapter06.

Let's start with our data architecture map.

The CiA videos for this book can be viewed at: http://bit.ly/3pp9vIH

Looking at the data architecture map
It is no secret that every system and application deals with data, and it is no secret that the
importance of data is growing year after year, especially with the rise of AI. Data volumes
are higher than ever before. Companies need to find ways to store data efficiently and at a
reasonable cost while being able to get insights from it. In this chapter, we will browse the
vast data landscape of Azure. A reduced version of our data architecture map is shown
in Figure 6.1:

https://azure.microsoft.com/free/
https://app.powerbi.com/signupredirect?pbi_source=web
https://app.powerbi.com/signupredirect?pbi_source=web
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter06
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter06
http://bit.ly/3pp9vIH

Looking at the data architecture map 241

Figure 6.1 – The data architecture map (reduced)

Important note
To see the full data architecture map (Figure 6.1), you can download the PDF
file at https://github.com/PacktPublishing/The-Azure-
Cloud-Native-Architecture-Mapbook/blob/master/
Chapter06/maps/Data%20Architecture.pdf.

Our map has five top-level groups:

• BIG DATA: The public cloud is probably the only viable option that deals with real
big data. However, big data services can also be used to our advantage with smaller
amounts of data. We will see an illustration of this in our Getting our hands dirty
with a near real-time data streaming use case section.

• MODERN and TRADITIONAL: We wanted to split modern and traditional data
concerns, because Azure allows you to use both. For example, we traditionally refer
to ETL (Extract Transform Load), but its modern counterpart is ELT (Extract
Load Transform). We traditionally work with relational database engines, while
their modern counterparts often rely on NoSQL.

• OTHER: This top-level node regroups data-related cross-cutting concerns.

• ARTIFICIAL INTELLIGENCE (AI): AI certainly represents the modern way of
extracting insights out of data.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/maps/Data%20Architecture.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/maps/Data%20Architecture.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/maps/Data%20Architecture.pdf

242 Data Architecture

As always, this map is not the holy grail, but it will surely help you find your way in the
vast Azure data landscape. Let's start with the traditional data practices in Azure.

Analyzing traditional data practices
In this section, we will review services that belong to the traditional data world. Our
purpose is to reassure you that what we can do on-premises can also be done the same
way in the cloud. Moving data workloads to the cloud does not necessarily mean that you
have to completely reinvent yourself and your way of working.

Let's first clarify that we do not use the term traditional in a pejorative (nor negative) way.
In many situations and for many enterprises, using traditional techniques still provides
full satisfaction, and you should not necessarily move to more modern technologies
just for the sake of it. (Our point has been made!) Figure 6.2 displays our zoom-in on
traditional data practices:

Figure 6.2 – Traditional data practices in Azure

The TRADITIONAL node regroups all traditional practices that we've typically used
for decades, for which Azure also has a bunch of services that we will discuss in the
following subsections. Let's start with Online Analytical Processing (OLAP) and Online
Transactional Processing (OLTP).

Analyzing traditional data practices 243

Introducing the OLAP and OLTP practices
OLAP and OLTP are typical Business Intelligence (BI) practices. We have been using
the entire SQL Server BI stack for years. This stack is typically composed of SQL Server
Reporting Services (SSRS), SQL Server Integration Services (SSIS), and SQL Server
Analysis Services (SSAS). Figure 6.3 shows how you can continue to use similar
technologies in Azure:

Figure 6.3 – OLAP and OLTP

Under the OLAP node, we see that SSAS is still available as a self-managed service, and
that AZURE ANALYSIS SERVICES is its fully managed equivalent. One of the benefits
of going to the cloud is the ability to delegate infrastructure and scalability concerns to
the cloud provider. You should favor AZURE ANALYSIS SERVICES Analysis Services
or Power BI Premium (https://docs.microsoft.com/power-bi/admin/
service-premium-what-is) whenever possible, so as to speed up time to market
and reduce your operational burden. Power BI Premium comes with extra AI features
compared to Power BI Pro. Should you not be happy with managed offerings, you can still
rely on self-managed SSIS and SQL Server column store indexes. Let's now explore the
ETL capabilities in Azure.

Introducing the ETL practice
Extract Transform Load (ETL), illustrated in Figure 6.4, is a traditional practice that
consists of extracting data from a source, validating and transforming it on the fly, and
then loading it into a destination:

Figure 6.4 – ETL in Azure

https://docs.microsoft.com/power-bi/admin/service-premium-what-is
https://docs.microsoft.com/power-bi/admin/service-premium-what-is

244 Data Architecture

Figure 6.4 shows that Azure offers Azure Data Factory (ADF) to perform such tasks.
ADF helps build visual pipelines with the ADF authoring portal. Every ADF pipeline
is associated with an integration runtime. The serverless offering makes use of the
AutoResolveIntegrationRuntime, which is hosted by Microsoft inside a network perimeter
that is not under your control. This IR flavor is the most cost-effective and fully managed
solution, but it is often discarded because the source and destination systems cannot be
firewalled with company-owned IP ranges/perimeters. A more recent possibility that is still
in preview as of 01/2021 consists of using the auto-resolve runtime with the managed virtual
network option. This allows you to connect to Platform-as-a-Service (PaaS) services sitting
behind private endpoints.

For that reason, Azure also ships with the Self-Hosted Integration Runtime, which
is functionally equivalent, but as the name indicates, it is self-managed. At the time of
writing, this runtime is available in the form of a Windows service that must be installed
on one or more virtual machines. This, of course, kills cost-efficiency and makes you
entirely responsible for high availability and disaster recovery. That is the cost of a firewall
rule! Similarly, you can use the SSIS Integration Runtime for lift-and-shift scenarios of
your on-premises SSIS to the cloud. Let's now explore RDBMSes.

Introducing the RDBMS practice
In Chapter 5, Application Architecture, we stressed the importance of choosing an
appropriate data store, and we recalled the difference between ACID and BASE. Although
RDBMSes are traditional, they will probably remain in use forever, because most
enterprise businesses require ACID capabilities. Azure ships with many RDBMSes as
shown in Figure 6.5:

Figure 6.5 – RDBMSes in Azure

The native Microsoft offering consists of Azure SQL Database, Azure SQL Edge, and
Azure SQL Managed Instance. Azure SQL Database is part of the public PaaS offering,
while Azure SQL Managed Instance is a fully dedicated SQL server instance, managed by
Microsoft. The main historical reason for choosing this option was to avoid any public
exposure. Now that Azure SQL public endpoints can be fully removed, thanks to Private
Link (more on this in Chapter 7, Security Architecture), there are fewer reasons to go for a
fully dedicated instance.

Delving into modern data services and practices 245

Azure SQL Edge, as its name indicates, is used for all sorts of devices that operate at
the edge, meaning the entry point of an enterprise network. The purpose of the edge
is to react faster to local changes and diminish back and forth roundtrips between the
cloud and the corporate network. Edge technologies are also usually resilient to a loss of
connectivity. SQL Edge is a data service that can be installed on such devices. The other
RDBMS services (such as Azure Database for MySQL, Azure PostgreSQL Databases,
and Azure Database for MariaDB) are also fully managed by Microsoft. Now that we've
covered a bunch of traditional systems and practices, let's delve into modern data services
and practices.

Delving into modern data services and
practices
As stated in the previous section, you should not rush to newer technologies for the
sake of it. However, the good news is that most of these technologies are available at an
affordable price, so you should at least explore them. Although we try to set services under
a certain category, some of them span multiple categories. So, you shouldn't consider their
positions on the map to be official or the only way to organize them. For example, Azure
Storage spans at least the modern and big data categories. Figure 6.6 shows Azure's vast
modern data landscape, which we will review in the upcoming subsections:

Figure 6.6 – The modern data landscape in Azure

Let's now explore the ELT category, which is the modern counterpart of ETL.

246 Data Architecture

Introducing the ELT practice
ELT is quite similar to ETL, with one notable exception: the transformation step. As we
saw earlier, in ETL, every step is entirely handled by the ETL pipeline. In ELT, the pipeline
is mostly used to copy data from one source to a destination. The transformation aspect
is handled by the destination itself, which requires a data store that can scale accordingly
and has native transformation capabilities. Figure 6.7 shows ELT in Azure:

Figure 6.7 – ELT in Azure

To ensure the extract and load parts of ELT, you can still rely on Azure Data Factory.
For the transformation part, you may use Azure SQL Database for SMP (Symmetric
Multiprocessing), and Hive on HDInsight or Azure Synapse Analytics for MPP
(Massively Parallel Processing). The principle of SMP is to share a single system bus
across multiple processors, and let each processor handle a dataset independently from
the others, while the computer resources are shared with other processors equally.

The principle of MPP is to split datasets across computers, so as to let each computer run
its own dedicated resources (which makes it a much more scalable approach). To be clear,
Azure SQL is able to do both SMP and MPP, but Azure Synapse Analytics (formerly
known as Azure SQL Data Warehouse) can handle that at a higher scale. Therefore,
Synapse Analytics is the tool of choice for MPP workloads.

Let's now explore the NoSQL services.

Exploring NoSQL services
NoSQL is becoming more and more present in the enterprise. As we saw in the previous
chapter, NoSQL fits many purposes and is well suited for distributed and modern
applications. Figure 6.8 shows the different NoSQL options:

Delving into modern data services and practices 247

Figure 6.8 – NoSQL services in Azure

We see different areas such as key/value stores, document stores, graph stores, and
columnar stores, which we will review in the coming subsections.

Let's start with the KEY/VALUE top-level group in the preceding diagram.

Learning about key/value stores
Table Storage, Cosmos DB Table API, and Azure Cache for Redis can all be used as
key/value stores. All of these stores are based on strong consistency. They can be used for
apps that require high throughput and massive interactions with the data stores. Table
Storage is Azure Storage's historical table store, and it is one of the first Azure services in
Azure's history.

Cosmos DB's Table API is the premium flavor of Table Storage. It comes with dedicated
throughput and single-digit millisecond latencies, but of course, it also comes at a higher
price. Cosmos DB Table API should therefore mostly be considered for mission-critical
workloads that have specific availability and latency requirements.

Azure Cache for Redis is mostly used to implement the cache-aside pattern, which we
covered in the previous chapter. Let's now look at the various document stores.

Learning about document stores
The only pure Azure native document store is Azure Cosmos DB. Cosmos DB is Azure's
NoSQL Swiss Army knife that you can use for almost everything. The preferred option
when working with Cosmos DB is to use the SQL API. We recommend it because it's the
fastest and lets you write the most advanced queries.

248 Data Architecture

Should you need to lift and shift an existing MongoDB database, you might leverage the
MongoDB API of Cosmos DB, but you should pay attention to the required MongoDB
API. Indeed, the features of Cosmos DB are often lagging behind the native MongoDB
offering. At the time of writing, Cosmos supports MongoDB API 3.6, while the native
MongoDB is at version 4. If you really prefer to work with a native MongoDB offering, you
can leverage Atlas, a marketplace solution for which there is a free offering available called
the M0 tier.

Let's now explore the remaining NoSQL store types.

Looking at other store types
For both graph and columnar stores, you can still rely respectively on the Cosmos DB
Graph API (Gremlin) and Cosmo DB Cassandra API. As an alternative, you can run
HBase on HDInsight. Besides NoSQL stores, we also rely on object stores, so let's have a
look at them.

Learning about object stores
Azure Storage, and more particularly Azure Blob Storage, is the de-facto choice for
storing blobs. The type of blob storage differs according to the usage required. See Figure
6.9 for the object stores in Azure:

Figure 6.9 – Object stores in Azure

For blob-only storage, you can choose the Hot, Cool, or Archive pricing tiers. They all
correspond to a certain usage frequency and come at different prices. To work with data
lakes, as a prerequisite, you should enable the Hierarchical Namespace feature of Azure
Blob Storage. This step converts a normal blob storage into a data lake.

Diving into big data services 249

Azure data lakes are built on top of Azure Blob Storage, but they are not enabled by
default. You might still see some old references to Azure Data Lake Storage Gen1, which
were the first generation of data lakes in Azure. Every greenfield project should leverage
Azure Data Lake Storage Gen2, which is enabled by the hierarchical namespace feature
described earlier. By the way, this is the reason why we placed it here and not under the
big data category, although data lakes are used for big data. Let's now also explore our big
data top-level group, which is also a modern way of dealing with data, but it deserves its
own dedicated top-level group.

Diving into big data services
Big data goes way beyond traditional data technologies, so it could have been placed under
the MODERN top-level group. However, as stated before, it is easier to make it a separate
group for the sake of clarity. In a nutshell, big data deals with data sets that are too large to
be handled by traditional data technologies. The good news, however, is that the opposite is
possible. You can use big data technologies to handle smaller volumes, and it is doable at an
affordable price in the cloud. Figure 6.10 shows the big data landscape in Azure:

Figure 6.10 – Big data in Azure

250 Data Architecture

As a preamble, we can say that Azure's data service masterpiece is Azure Synapse
Analytics (ASA). ASA can be used for whatever data purpose you may have with Azure.
Therefore, it's impossible to position it in a very specific place on the map. So, if you know
nothing about Azure data services, you should consider ASA an all-in-one data service.

We have divided the big data category into three sub-groups: OPEN SOURCE,
INGESTION, and ANALYTICS. Let's explore them now. We'll start with the
INGESTION group.

Ingesting big data
Ingesting big data means that you're potentially ingesting millions of messages per second,
but not all services have that capability. Figure 6.11 shows the services you can use in
Azure to sustain such high volumes:

Figure 6.11 – Big data ingestion in Azure

For Internet of Things (IoT) scenarios, Azure IoT Hub is the most complete offering.
It supports both Device to Cloud (D2C) and Cloud to Device (C2D) style of
communications, and none of its alternatives do. You also have more advanced device-
related information thanks to the Device Twins. Note that you can also use both Azure
Event Hubs and Kafka on HDInsight, but they have no IoT-specific features. IoT Hub
also supports the IoT protocol gateway and IoT Edge module. It is a full set of services
dedicated to IoT solutions.

For general purpose ingestion, you may rely on the native Azure Event Hubs service,
which can ingest millions of events and messages per second. Azure Event Hubs may have
one or more consumer groups, which can handle messages as they come. It is also often
used in conjunction with Azure Stream Analytics to perform on-the-fly analytics and to
route data accordingly.

Diving into big data services 251

If you need to work with the Kafka protocol, you may opt for Kafka on HDInsight,
which is fully managed by Microsoft, or Kafka on Event Hubs. Kafka on HDInsight
supports 100% of the Kafka features. Choosing between Kafka on HDInsight and Kafka
on Event Hubs should be determined based on the features you need and the associated
costs. Kafka on HDInsight is much more expensive. You may as well use a self-managed
version of Kafka on AKS, or even directly on virtual machines. Doing so might be cheaper
(although that's not guaranteed), but you're also then responsible for the high availability
and disaster recovery duties. Of course, satellite services, such as Azure Data Factory and
Azure Storage, may play a role in the ingestion mechanics.

Let's now explore some big data analytics services.

Exploring big data analytics
The purpose of data analytics is to extract useful insights from data, and ultimately help
the decision-making process. As stated in the preamble, ASA is an all-in-one data service.
It integrates with many other services and is the former Azure Data Warehouse solution.
More than just a rebranding, ASA aims to regroup most traditional/modern and big data
concerns into a single service. On top of its ELT capabilities, ASA lets you analyze data at
scale, leverage both machine learning and deep neural networks, and perform near real-
time data analysis. The same goes for HDInsight, but with its open source roots. Figure
6.12 shows the big data analytics services in Azure:

Figure 6.12 – Analytics on Azure

252 Data Architecture

We will talk about HDInsight in the Azure-integrated open source big data solutions
section. ASA is often compared to Azure Databricks, yet another analytics tool. In a
nutshell, we can say that Azure Databricks really focuses on an improved version of Spark
and is intended to be used by data scientists only. Unlike ASA, Azure Databricks is also
not suitable for data warehouses. They both integrate with data lakes. However, data lake
integration with Azure Databricks is optional. Finally, Structured Streaming is available
in Databricks to perform near real-time analysis.

Power BI can be used for reporting purposes; it has real-time APIs that can surface data
onto real-time dashboard tiles. Power BI real-time datasets are often directly provisioned
by Stream Analytics jobs, or they can be fed using Power BI's real-time APIs. Overall,
Power BI exists to meet your data visualization needs.

When it comes to pure analytics, ASA connects inputs and outputs. ASA can apply
on-the-fly data queries and take real-time decisions based on the query outcomes. For IoT
analytics, Time Series Insights (now at Gen 2), is one of the best choices. The reason why
Time Series Insights is a good fit for IoT is because IoT devices typically send telemetry
data at regular time intervals. Depending on the time interval and the number of devices,
you may quickly be overwhelmed by the amount of data. Time Series Insights can help
you detect anomalies and hidden trends in your data. It also ships with an SDK that makes
it easier to surface data into visual charts.

An Azure data gateway is necessary when you want to connect Power BI (as well as
the entire Power Platform and Azure Logic Apps) to on-premises data sources, even if
you already have a hybrid Azure setup (which we discussed in Chapter 3, Infrastructure
Design). If you have ExpressRoute, you can configure the data gateway to bypass the
internet. If you don't have ExpressRoute, the data gateway will typically reach out to
Azure over an internet connection. The gateway itself can be installed on any on-premises
machine (or even in a DMZ), provided this machine has access to the targeted
on-premises data store. At the time of writing, the gateway can only be installed on
Windows Server and does not currently ship as a container. And lastly, like many other
Azure agents, the gateway only requires outbound connectivity, not inbound, which
significantly simplifies the aspects of firewall configuration.

Let's now look at HDInsight.

Introducing AI solutions 253

Azure-integrated open source big data solutions
Azure HDInsight allows you to run the most important Apache data services shown in
Figure 6.13. Since our book is about Azure and related Microsoft technologies, we will not
delve into the Apache stack, but we wanted to inform you about this important possibility.
In 2020, the native open source Apache building blocks transitioned to the Microsoft
Distribution of Hadoop (MDH). For the open source purists out there, this might be bad
news. However, for the rest of us, this simply means you get better support from Microsoft
and better integration with Azure:

Figure 6.13 – HDInsight open source support in Azure

A concrete example that is born out of this transition to MDH is SparkCruise, which
boosts Apache Spark queries by building materialized views automatically. This way, it
can let subsequent queries consume from the materialized views, instead of computing
again the results. HDInsight is also an all-in-one service, and there is probably no obvious
reason to opt for HDInsight or Synapse, other than the fact that Synapse is likely going to
be better integrated with the rest of the Azure ecosystem.

We will now look at some AI data solutions.

Introducing AI solutions
AI has been on everyone's lips for many years now. In this section, we will review the most
important AI concepts and their corresponding Azure services.

254 Data Architecture

Figure 6.14 is a summary of Azure's AI landscape:

Figure 6.14 – AI solutions in Azure

We say this is a summary because Azure Cognitive Services (alone) can be regrouped
into about 20 different services. We already talked about most of these services, but this
time we will take the AI-specific angle. Let's start with the machine learning and deep
learning options.

Understanding machine learning and deep learning
The services depicted in Figure 6.15 are quite close, in terms of capabilities, and they are
all intermingled. This makes it very hard to position them for a specific use case:

Introducing AI solutions 255

Figure 6.15 – Machine learning in Azure

The only no-brainer is Azure Cognitive Services (ACS), a full set of pre-built AI
capabilities, which are made available to the average developer through REST APIs.
The biggest benefit of ACS is that you do not need any specific AI skills to leverage it.
The underlying models are ready to be deployed as a new instance for you to use. They
respond to mainstream AI needs, such as Optical Character Recognition (OCR),
speech recognition, and Natural Language Processing (NLP) requirements, such as text
translations, entity recognition, and so on.

ACS makes it easy to empower your applications with AI features. Azure Cognitive
Search embeds AI capabilities into its search engine, thanks to its cognitive peers, at
no extra cost. Another strength of ACS is that you can also easily get an instance tailor-
made for your business. For example, you can spin up an instance of LUIS (Language
Understanding), and then train it with your own business jargon and patterns in a matter
of hours. LUIS will quickly recognize your custom business entities and can even be
trained and used by business users.

The same applies to the Custom Vision service, which lets you build custom image
classifiers in minutes. The cherry on the cake is that most ACS services can also be
hosted within containers, which makes it easy to deploy them on edge devices or in any
containerized environment.

256 Data Architecture

Things get more complicated when we want to compare Azure Databricks and Azure
Machine Learning (AML), because they are both very good products. Azure Databricks
supports more languages than AML and is Spark-based. Azure Databricks is particularly
well suited for very large datasets. Unlike ACS, Azure Databricks is intended to be used
by data scientists only, because it is mainly built on Python, R, and Scala, which ship with
machine learning libraries. This makes Databricks harder to use for the average developer
who is usually unacquainted with these specific languages and libraries.

As you can imagine, it is a lot easier to get started with AML thanks to its Azure Machine
Learning Studio user interface, which lets you easily build machine learning workflows. It
also does a very good job of comparing different models and showing their corresponding
scores. Another strength of AML is the fact that it lets you publish APIs of models that
were trained with another engine. For example, you might publish an R model that was
generated on-premises, and then make it available as a web service that you could proxy
(or not) with Azure API Management.

Overall, it is hard to choose between AML and Azure Databricks. External factors, such as
costs, skills, and company culture, may become the deciding factors. The good news is that
you do not necessarily have to choose between them, as we will see in our next section.

Integrating AI solutions
Figure 6.16 shows the different interactions between AML, Azure Databricks, and ASA:

Figure 6.16 – AI analytics integration

Dealing with other data concerns 257

As stated in the previous section, these services are not mutually exclusive. For example,
you can leverage the Synapse Connector to use ASA as a data source for Azure
Databricks. ASA has native integration with AML. It lets you consume models that are
trained in AML, but that are accessed by ASA (through the Automated ML feature).
Integration between the two systems is secured by Azure Active Directory. Lastly, even
Azure Databricks and AML can integrate. To get the best of both worlds, you might
decide to prepare and train your data in Azure Databricks, but then serve it in AML.

So far, we mostly covered data technologies. Whether we deal with traditional or modern
technologies, there are some transversal concerns that we will cover in our next section.

Dealing with other data concerns
In this section, we will review some cross-cutting data concerns, no matter whether you
make use of traditional or modern data techniques. Figure 6.17 illustrates some transversal
needs, whether you are in a traditional, modern, or big data world:

Figure 6.17 – Cross-cutting data concerns

Let's start with search.

Introducing Azure Cognitive Search
Azure ships the Azure Cognitive Search service. It used to simply be named Azure
Search, but it got rebranded to the new name because it also now encompasses other AI
capabilities brought by the different cognitive services. Azure Cognitive Search is very well
integrated with the other Azure services, which means that you can plug any Azure data
store (Cosmos DB, Table Storage, Azure SQL, and so on) into it.

258 Data Architecture

The cognitive part enriches the search contents. For example, the NLP engine will detect
entities and extract key phrases and sentiment, while the OCR functionality will extract
text from indexed images. AI enrichment is particularly useful with unstructured content.
You can use built-in indexers, such as the Azure SQL indexer, which will feed Azure
Cognitive Search with SQL data sources. You can also use dynamic indexers, which you
can create with various applications and feed with data as it comes. The search engine
exposes OData capabilities, and two Lucene-based query languages, which are Simple
Query Parser and Lucene Query Parser.

Elastic on Azure is a marketplace alternative, which is also Lucene-based and has open
source roots. Feature-wise, they are both comparable, although Elastic is a bit richer. For
example, it supports many more data types than Azure Cognitive Search. It also includes
the concept of watchers, which have no equivalent in the Azure Cognitive Search world.
But once again, you should first look at your requirements and then choose the most
appropriate solution.

Back in Figure 6.16, we split AI and full-text search, but of course, both Azure Cognitive
Search and Elastic also perform full-text indexing. We simply wanted to indicate that
for mere full-text indexing, you can also rely on the built-in Azure SQL full-text search.
Sometimes, sharing data is necessary, and that is what we will discuss in our next section.

Sharing data with partners and customers (B2B)
B2B data sharing can be achieved using Azure Data Share. With Azure Data Share,
the data provider can send invitations to a data consumer in order to let the consumer
directly access the source store, or to send a snapshot of the shared data to the consumer
side. The consumer can choose the target receiving the store, which is independent of the
source data store type. You can share Azure Blob Storage data and let the consumer decide
to receive that data into a data-lake-enabled target. If you opt for in-place access, the
consumer receives a link to access your data with read-only permissions, thus preventing
the creation of snapshots, which are not free.

Sharing data is interesting, but what about migrating your data? We will explore data
migration in our next section.

Migrating data
Azure Database Migration comes in handy for on-premises-to-cloud or cloud-to-cloud
data migrations. The migration process counts three phases: discovery, migration, and
post-migration actions. The complexity of the discovery process depends on the type of
migration you make, either homogenous or heterogenous.

Getting our hands dirty with a near real-time data streaming use case 259

Homogeneous migrations have similar source and target database engines, such as SQL
Server to Azure SQL Database. On the other hand, heterogenous migrations have data
transformation steps that convert the original data schemas from the source to the target.

Whatever you do with data, you'd better govern it. That's the topic of our next section.

Governing data
Azure Purview is the last-born data governance tool built by Microsoft for Azure, and
Purview is still in preview as of December 2020. It is not exactly a replacement for Data
Catalog, because both services can live side by side, but it is probably more futureproof. If
you start a greenfield Azure data journey, you should investigate Azure Purview.

Azure Purview aims to give you a single pane of glasses to manage your entire data
landscape. While the ambition is great, we know that this is very challenging in practice.
However, Azure Purview allows you to discover and classify data across on-premises,
cloud-based, and SaaS solutions. Beyond data, Azure is releasing more and more cross-
cloud services (such as Azure Sentinel, Azure Arc, and so on) that help you govern your
hybrid solutions. We do not have a detailed assessment of Purview just yet, but it is
certainly worthwhile to look at it.

We have covered our entire data architecture map. Now, let's get our hands dirty with a
concrete example, which will let you taste the flavor of a modern data experience.

Getting our hands dirty with a near real‑time
data streaming use case
The time has come to get more acquainted with a few data services. One of the beauties of
the cloud is the possibility to ingest and analyze large amounts of data, which are typically
involved in big data scenarios. However, big data services can also handle small amounts
of data at a very affordable price. To give you a glimpse of what native Azure services can
do for you, we will build a quick solution from scratch, and then we'll see it in action.

Here is the scenario:

We have radars located in different cities, and we want to have a real-time dashboard showing
both vehicles going over the speed limit and vehicles observing the speed limit (or less).

To make your life easy, we created a small .NET Core console app that simulates the
radars. You can download the app from https://github.com/PacktPublishing/
The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/
Chapter06/code/devicesimulator.zip.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/devicesimulator.zip
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/devicesimulator.zip
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/devicesimulator.zip

260 Data Architecture

But before we start this app, let's first prepare our Azure environment. We will need
the following:

• An Azure event hub, which is where our radar simulator will send speed events.

• A Stream Analytics (SA) job, which will pull the radar events from our hub. It will
calculate aggregates and will route the results to different Power BI datasets.

• A Power BI workspace, where we will build our dashboard.

Because we know data architects may not be very interested in code, we will simply use
the portal to provision different services, and we'll use our app to test them. Let's start
with the Power BI workspace.

Setting up the Power BI workspace
As stated in the Technical requirements section, you must have a Power BI environment.
Use a trial version if needed. Here are the steps required to set up our workspace:

1. Navigate to https://app.powerbi.com/home and log in.

2. In the menu on the left, click Workspaces | Create workspace, and name it packt.

3. Navigate to your workspace, and then create an empty dashboard. Our Power BI
datasets will be created automatically by SA.

We are done for now. Keep the Power BI page open, as we will need to come back to grant
permissions to Stream Analytics. Let's now prepare our Azure Event Hub instance.

Setting up the Azure Event Hubs instance
In your Azure subscription, perform the following steps:

1. Navigate to https://portal.azure.com and log in.

2. Create or reuse the resource group named packt.

3. Inside the Resource group, click New | Event Hubs, give it a unique name, choose
the correct region, and make sure it is well associated with the packt resource
group. Note that you can select the Basic pricing tier.

4. Navigate to your newly created namespace via Event Hubs. Add a new hub named
data, keeping the default options.

Our hub, which will be our input for the SA job, is now ready. Let's finish with the SA job.

https://app.powerbi.com/home
https://portal.azure.com

Getting our hands dirty with a near real-time data streaming use case 261

Setting up Stream Analytics (SA)
As a reminder, SA will be between our event hub and Power BI. It will read the incoming
data stream, apply some queries, and route the results to the Power BI datasets, which will
be surfaced on a dashboard. The following steps are required to set up SA:

1. Go to your packt resource group.

2. Add new resource and select Stream Analytics Job. Name it packt as well.

3. Once the SA instance is provisioned, go to Managed Identity, and check the Use
system-assigned identity box.

4. Go to Inputs | Add Stream Input | Event Hub, and select the hub we created
earlier. Name it hub. Make sure to select the Connection string option in the
authentication mode drop-down list. (The list defaults to Managed Identity, but we
want to simplify your life for this small exercise, and the connection string option is
easier to use.)

5. Before we add our Power BI output, we need to authorize our SA instance to
interact with the Power BI workspace that we created earlier. To do so, we first
need to allow the use of managed identities. So, go back to the Power BI portal and
perform the following steps:

a) Click on Settings | Admin Portal.

b) Go to Tenant Settings | Developer Settings | Allow service principals to use
Power BI APIs.

c) Go back to your workspace and then go to Access, search for the SA service
name, select the service, and give it the member role. Figure 6.18 shows you what it
should look like:

Figure 6.18 – Granting the member role to the SA job
Remember that we enabled the system-assigned managed identity for our SA
instance. We now grant that identity access to our Power BI workspace and that is
how SA will be able to create its datasets and push data into them.

262 Data Architecture

6. Now, back in SA, you can add the Power BI output. Click Outputs | Add | Power
BI | Authorize. You will have to log in with your Power BI credentials as an
administrator of the workspace. This step will connect our SA instance with Power
BI. It will also check whether the identity has access to the target (hence the reason
for the previous step). Name your output powerbi.

7. Create another Power BI output, as in step 6, and name it fine.

8. Now that both our input and our output have been defined, you can create the query.
Open the query file we provided at https://github.com/PacktPublishing/
The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/
Chapter06/code/sa-query.txt, and copy its contents.

9. Click Query, and then paste the contents into the text placeholder. You should end
up with something like the query shown in Figure 6.19:

Figure 6.19 – Our SA query

As you can see, we have our hub input and our two Power BI outputs on the left. Our job
query works with two sub-queries. The first one selects all the measures that are under 50
miles/hour and groups them by sensor. TumblingWindow is a contiguous time interval.
Our second query selects all the overspeed measures. Next, our first main query
regroups data from the two sub-queries and sends them to our first Power BI output. The
second query sends all the overspeed measures to the fine output. Let's now see the
code in action.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/sa-query.txt
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/sa-query.txt
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/sa-query.txt

Getting our hands dirty with a near real-time data streaming use case 263

Testing the code
In theory, you should be ready to test the solution. To make it easy for you, we have
developed a .NET Core console app, which you can download at https://github.
com/PacktPublishing/The-Azure-Cloud-Native-Architecture-
Mapbook/blob/master/Chapter06/code/devicesimulator.zip. Since it
is an archive, you should unzip it somewhere on your file system. We are going to use a
simple MS DOS command prompt to run the application.

Before launching the application, we need to update its configuration file with the
connection string of our event hub. To do so, perform the following steps:

1. Locate and open the appsettings.json file in the netcoreapp3.1 folder.

2. Replace your connection string with your event hub's connection string. To
get this information, do the following:

a) Locate your event hub namespace within the Azure portal.

b) Click Shared access policies | RootManageSharedAccessKey | Connection
string-primary key. Copy the value.

c) Paste it in the config file.
The application is ready to be launched, but let's first have a quick look at its code,
which you can find at https://github.com/PacktPublishing/The-Azure-
Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/
DeviceSimulatorConsole/Program.cs.

First, let's have a look at our data object:

public class DataObject{

 private string[] sensorNames = new string[] { "Brussels",
 "Genval" };

 public string sensorName { get; private set; }

 public double speed { get; private set; }

 public string plateNumber { get; private set; }

 public DataObject()

 {

 sensorName = sensorNames[new Random().Next(0, 2)];

 speed = (new Random().NextDouble()*100);

 plateNumber = Guid.NewGuid().ToString();

 }

}

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/devicesimulator.zip
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/devicesimulator.zip
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/devicesimulator.zip
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/DeviceSimulatorConsole/Program.cs
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/DeviceSimulatorConsole/Program.cs
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter06/code/DeviceSimulatorConsole/Program.cs

264 Data Architecture

Upon instantiation, we randomly choose a sensor, whose name is the location, and we
assign a random speed and a unique plate number.

Here is the body of our main method, which makes use of the data object:

await using (var producerClient = new EventHubProducerClient(
 config["EventHubCs"], "data")){

 for (int i = 0; i < instances; i++){

 parallelTasks.Add(Task.Run(async () =>{

 using EventDataBatch eventBatch = await
 producerClient.CreateBatchAsync();

 for (int i = 0;i<25;i++){

 eventBatch.TryAdd(new EventData(Encoding.UTF8.
 GetBytes(

 JsonSerializer.Serialize(new DataObject())

)));

 }

 Interlocked.Add(ref count, eventBatch.Count);

 await producerClient.SendAsync(eventBatch);

 }));

 }

 await Task.WhenAll(parallelTasks);

}

We use the EventHubProducerClient and EventDataBatch classes to send
events to our hub. Each task sends a series of 25 events. The number of tasks is passed
as a parameter.

Now you can launch the application by simply running DeviceSimulatorConsole.
exe <n> as shown in Figure 6.20:

Figure 6.20 – Execution result of DeviceSimulatorConsole.exe

Getting our hands dirty with a near real-time data streaming use case 265

The <n> argument is the number of instances you want to run in parallel. In this example,
we ran 5 instances, which produced 125 events and sent them in less than a second. There
are a few remaining steps:

1. Start the SA job to extract the events and then send them to Power BI. Locate
your SA instance within the Azure portal and simply click Start. It may take a
few minutes to start.

2. Verify that the two Power BI datasets were created in your workspace. Since you
already sent a few events to the event hub and started the job, your datasets should
be available.

3. Edit your empty dashboard to add a tile. Choose the Custom Streaming Data tile type.

4. Choose your powerbi dataset | Clustered column chart | sensorName in the
axis. Choose TotalUnderMaxSpeed and TotalOverSpeed in Values. Choose
a frequency of 1 minute.

After a few seconds, you should see your dashboard, as shown in Figure 6.21:

Figure 6.21 – Real-time dashboard showing the speed of vehicles

266 Data Architecture

If you do not see anything, refresh the page.

Remember that we have two datasets: powerbi and fines. If you explore the data in
fines, you should see all the vehicles that were caught driving over the speed limit, as
shown in Figure 6.22:

Figure 6.22 – Raw data report of flashed vehicles

In our example, we simply sent that data to a Power BI dataset, but you could send it to
a fine-recovery service to undertake concrete actions. We also dealt with a very limited
number of events, but we could easily scale this by using auto-scaling for SA. Let's now
recap the chapter!

Summary
In this chapter, we browsed the vast data landscape of Azure. We split the traditional and
modern data technologies to help you understand the possible solutions should you be on
the verge of a transition from regular BI to advanced analytics, or from ELT to ETL.

Azure shines in the big data space, and that may be the area where only public cloud
providers can make a real difference compared to on-premises systems. We showed you how
Azure has both a native big data offering as well as solutions that are open source in origin.
Many services are intermingled, but the trend is to let ASA be at the center of everything.

Lastly, we worked on a concrete hands-on exercise to give you a glimpse of what a modern
solution might look like. We completed an end-to-end scenario, from data ingestion
and real-time queries to surfacing the results on a real-time Power BI dashboard. You
should now have a better understanding of when to use what, and how to get started with
top-notch data services.

Our next chapter is about security in Azure. The public cloud, only by the mention of its
name, often agitates the traditional security architects. Let's see what modern security
looks like and how to give peace of mind to our blue and red teams.

7
Security

Architecture
In this chapter, we emphasize and explain the importance of security in the cloud. We
will explore security architecture, explaining the paradigm shift in identity in the cloud.
Finally, we will drill into several use cases in order to show the practical applications of
our recommendations.

We will more specifically cover the following topics:

• Introducing cloud-native security

• Reviewing the security architecture map

• Delving into the most recurrent Azure security topics

• Adding the security bits to our Contoso use case

By the end of the chapter, you will have a better understanding of cloud-native security
and a better knowledge of recurrent and typical Azure security topics.

Let's begin by reviewing the technical requirements.

268 Security Architecture

Technical requirements
There are no hands-on exercises, so there are no specific technical requirements.
All the diagrams and maps are available (in full size) at https://github.com/
PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/
tree/master/Chapter07.

First, let's introduce cloud-native security.

Introducing cloud‑native security
In light of what we have seen so far in previous chapters, we know that the cloud can help
us develop and deploy solutions faster and at a better cost. However, that is only true if we
also modernize the way that we secure our workloads. Cloud-native security relies on the
Shift-Left principle, which consists of integrating security processes earlier in the life cycle
of an asset. Considering security from the ground up prevents unexpected delays and
surprises later, prior to the production deployment. However, this is easier said than done!

Often, we see developers (usually early adopters) and infrastructure engineers embracing
this modernized way of working (with Infrastructure as Code (IaC)), while security
remains organized in a traditional way (waterfall and reactive). Often, you must wait
weeks, if not more, to have a firewall rule ticket request accepted and implemented. This
way of working is the exact opposite of the Shift-Left mindset, and it tends to annihilate
the efforts of other teams.

With the proper tooling and technologies in place, security becomes declarative. In
Chapter 4, Infrastructure Deployment, we saw how CI/CD factories help organizations to
provision both code and infrastructure. The same concept applies to security, even more
with true cloud-native platforms, such as Kubernetes, where network policies, ingress
rules, and so on are all automated. Also, cloud-native often means polyglot applications,
made of multiple programming languages and a ton of open source libraries. That is why
integrating security in your CI/CD factory is even more important.

However, cloud-native security is not just a technology matter; it is a mindset. It requires
different organization and a different culture, which is much harder to achieve since
organizations often prefer decades of legacy practices. Whatever industry you are in and
whatever regulatory obligations you have, there is always room for automation and more
fluent processes. Regulators often define the what, not the how!

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter07
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter07
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/tree/master/Chapter07

Introducing cloud-native security 269

The cloud-native security mindset implies that security architects should create value
for the organization, and they should find the means to automate security practices and
ensure their processes do not become an impediment. They should be enablers, not
disablers or showstoppers. They should help non-security people realize why security
is important and bring them solutions. More importantly, they should make risk
assessments and let the business decide on the residual risks they are willing to accept.

This mindset shift is not easy to achieve, especially in some industries, such as banking,
whose DNA is naturally risk-averse. The extent to which you will be able to transition
from traditional security to cloud-native partially depends on this DNA. But make no
mistake: while the cloud and related technologies can really make a difference, you will
never achieve the promises (cost-friendliness, high velocity, robust and scalable solutions,
and so on) if you do not change your security practices. Security is an integral part of that
success or failure.

From a technical perspective, there is also a shift toward identity as a primary layer
of defense, instead of the network, although Azure has filled many feature gaps in the
network area over the past years. Looking back, in 2015, Azure did not have many
network features, other than for pure Infrastructure as a service (IaaS) workloads.
In 2020, Microsoft largely expanded its network-related features for its Platform as a
service (PaaS) and Function as a service (FaaS) offering. However, if you rely on the
network as a primary layer, it often remains challenging, more expensive, and sometimes
even convoluted. This technical shift is often not well understood by traditional security
architects, who too often resort to network-only security (the perimeter obsession and the
DMZ mindset) while neglecting the identity aspect of security.

Throughout this chapter, we will try to distill some cloud-native advice and draw your
attention to typical, traditional practices that might represent an impediment to a smooth
cloud journey. Remember that the success of this journey is tightly coupled with your
security practices.

Let's now review the security architecture map.

270 Security Architecture

Reviewing the security architecture map
In this section, we will browse the main security-related services, with a special focus
on identity, the cloud's primary defense layer. Our objective is to make you realize the
importance of identity in Azure. We already covered most of the network plumbing in
Chapter 3, Infrastructure Design, so we will now essentially review some service-specific
network features. We will also look at the various encryption possibilities, and more
globally, how to handle your security posture. Figure 7.1 shows the security areas that we
will explore:

Figure 7.1 – The security architecture map

Important note
To see the full security architecture map (Figure 7.1), you can download the
PDF file at https://github.com/PacktPublishing/The-
Azure-Cloud-Native-Architecture-Mapbook/blob/
master/Chapter07/maps/Security%20Architecture.pdf.

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter07/maps/Security%20Architecture.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter07/maps/Security%20Architecture.pdf
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook/blob/master/Chapter07/maps/Security%20Architecture.pdf

Reviewing the security architecture map 271

Our map has six top-level groups:

• RECURRENT SERVICES: We will see the different service-level options that we
can use as part of our security arsenal.

• NETWORK LAYER: This layer is there for the sake of completeness, but it is
essentially similar to the network layer that is part of the infrastructure architecture
map, since it mostly focuses on bridging data centers (and it depicts the hub and spoke
topology). We will not repeat what we told you previously. Instead, we will highlight
some network-related trade-offs that we will tackle in the upcoming subsections.

• IDENTITY LAYER: As stated in the section introduction, we will take an in-depth
exploration of the identity piece, our primary layer of defense in the cloud.

• RECURRENT DATA SERVICES: We will explore the data-specific security features.

• ENCRYPTION: Encryption also has a strong emphasis on the cloud, so we will
discuss Bring Your Own Key (BYOK), Hold Your Own Key (not Host), and
Service-Managed Key (SMK) concerns.

• SECURITY POSTURE: We will explore some built-in tools that help you
to manage your security posture, as well as see how to integrate them with
on-premises systems.

Before we dive into more specific areas of the map, let's give you a brief description of a
few topics that will be recurrent across multiple top-level groups, and that we will analyze
further in the Delving into the most recurrent Azure security topics section:

• Azure Private Link (APL): In a nutshell, APL allows us to define a private endpoint
for a public PaaS service, to prevent internet inbound traffic.

• Shared Access Signatures (SASes): In a nutshell, SASes are a historical way to
authenticate against various services, such as Azure Storage, Azure Service Bus, IoT
Hub, and so on. It is gradually being replaced by Azure Active Directory (AAD).
However, SAS is still heavily used.

• Managed identities: These represent an Azure-only method of authenticating
against a resource, by using AAD. Managed identities can replace SAS wherever
possible.

With this clarification made, let's start with the RECURRENT SERVICES group.

272 Security Architecture

Exploring the recurrent services security features
In this section, we will explore the security features of the most frequently used services.
The groups are highlighted in Figure 7.2:

Figure 7.2 – The recurrent services security features

Let's now explore the first group, the API-related security features (at the upper left
of Figure 7.2).

API security features and topologies
For every API workload, and mostly APIs that are exposed to external parties (B2B and
B2C), you will leverage Azure API Management (APIM). If the backend services, proxied
by APIM, are in a private perimeter, you will have to use the premium pricing tier, which
gives you the following possible options:

• Use Microsoft-hosted gateways: Each gateway unit costs about $2,700/month.
The advantage is that they are entirely managed by Microsoft. They also support
geo-redundancy for global API deployment.

Reviewing the security architecture map 273

• Use self-hosted gateways: Each self-hosted gateway costs about $800/month.
The cost savings are substantial, but the primary reason why you would self-host
a gateway is for multi-cloud and/or hybrid solutions. For example, when your
backend services are on-premises, a self-gateway unit is a better option than a
Microsoft-hosted gateway, in terms of data-in/data-out. Of course, with self-hosted
units, you are entirely responsible for the high availability and disaster recovery
mitigation.

• Use both at the same time: You can combine self-hosted units with Microsoft-
hosted units, for instance, in hybrid workloads where some backend services are in
the cloud and others are on-premises.

For backend services that would also be publicly accessible, you can use any pricing tier.
For example, you can have a backend hosted on an Azure app service or as an Azure
function on the public PaaS offering, as shown in Figure 7.3:

Figure 7.3 – APIM and public backend

IP restrictions are set at the app service (or function app) level, to only allow calls
coming from the APIM gateway, the Policy Enforcement Point (PEP). To ensure a
Web Application Firewall (WAF) feature, the gateway itself can be proxied by an Azure
Application Gateway or Azure Front Door instance, depending on the gateway VIP type
(public or private). Azure Front Door is currently limited to public backends only.

274 Security Architecture

In terms of policies, APIM allows you to control almost everything, thanks to its rich
policy engine. The typical policies that you can enforce are as follows:

• JWT validation, to make sure that every request is authorized to connect to the
underlying backend. You can connect APIM to any OpenID Connect (OIDC) IDP,
providing its discovery endpoint (/.well-known/openid-configuration)
is connectable. If the IDP cannot be connected, its keys can be registered in APIM
directly. JWT validation typically involves the validation of the token issuer, the
audience, and some extra claims, such as scope validation.

• Mutual TLS (mTLS) through client certificates. This is one of the built-in
APIM policies.

• Subscription keys can be issued by the product or by an API. Subscription keys are,
in theory, more suited for usage reporting, instead of pure authentication. However,
in pure B2C scenarios, where you do not want to impose too many constraints on the
subscribers, the keys still represent a way to identify a subscriber and to protect an API.

• Among various other policies, throttling prevents the abuse of the API. Throttling
represents an effective DoS/DDoS mitigation, because every attempted instance of
abuse (or incorrect request) is discarded by the gateway.

Let's now look more closely at Azure App Service and Azure Functions, which are often
proxied by APIM.

Exploring Azure App Service and Azure Functions
In this section, we are going to explore two of the most frequently used Azure services,
namely Azure App Service and Azure Functions. Figure 7.4 shows the various options at
our disposal:

Figure 7.4 – Azure App Service and Azure Functions security features

Reviewing the security architecture map 275

Azure Functions relies on the same building block as Azure App Service, with one
noticeable exception: the consumption tier, which is also known as the serverless tier.
Other than the serverless tier, both Azure Functions and Azure App Service are built on
top of an App Service plan, which defines the prepaid compute. A plan can host one or
more apps and can run one or more instances. The total cost equals the plan price times
the number of instances.

The consumption plan is by far the cheapest (free: 1 million calls/month, about 50 cents
for every extra million calls), the most elastic (scales out automatically), and the fastest
option to launch something in production, because there is nothing you have to do but
deploy the function code. However, from a perimeter perspective, the function runtime
runs in a public Microsoft-controlled network perimeter. Azure Functions is hosted on
function apps, which support network Access Control Lists (ACLs), in order to restrict
inbound access to some IP ranges, such as the VIP of an APIM gateway.

If you want to limit the exposure even more, you can use APL, but this is only available as
part of the premium tier. If your function or application must connect to a resource that is
inside a VNet, you can leverage the VNet integration, which is a way to redirect outbound
traffic through a VNet, while the service instance itself lives outside the VNet.

Another possibility is to leverage the fully isolated flavor: the App Service Environment
(ASE). With an ASE, the app service(s) is fully inside a VNet. Both inbound and
outbound traffic can be controlled using Network Security Groups (NSGs) and User-
Defined Routes (UDRs), to an Network Virtual Appliance (NVA) or Azure Firewall. The
ASE is by far the most expansive and complex option, but it is fully in line with the hub
and spoke topology. When opting for an ASE, you must also purchase the Isolated App
Service plan. The ASE is available in the following two modes:

• The internal load balancer (ILB) App Service environment (ASE): This option
removes every public endpoint and is Payment Card Industry (PCI)-compliant.

• The external ASE: This option still exposes public endpoints while automatically
having access to resources that are inside a VNet, and it is not hosted on a multi-
tenant offering.

Both ASE options are quite expensive. However, Microsoft launched a preview of
ASE v3 in November 2020. ASE v3 is announced to be simpler and cheaper than its
predecessors, because Microsoft has decided to eliminate the ASE flat fee cost, which was
about $1,000/month. Therefore, costs drop by about 80%. In any case, if you opt for an
ASE, you should consider deploying more than a single application to amortize the costs
incurred by the ASE flat fee (if the version is before v3) and the isolated App Service plan
(up to $850/month/instance).

276 Security Architecture

At last, another way to privatize Azure Functions is pack them as containers and
host them in any orchestration platform that you control. Of course, this makes you
responsible of the availability and disaster recovery bits.

You must pay special attention to Azure Functions for any network restriction that you
put in place, because they have bindings and triggers. As we saw in Chapter 5, Application
Architecture, most modern applications are distributed and event-driven. At the time of
writing, Azure Functions instances that do not have a public endpoint cannot be called by
Azure Event Grid, because it only supports public endpoints. Thus, the scenario shown in
Figure 7.5 is impossible:

Figure 7.5 – Network impact on Azure Function triggers

The same could apply to the HTTP trigger, depending on where the caller is. A mitigation
to this problem is to place an Azure service bus in between Event Grid and Azure
Functions, as shown in Figure 7.6:

Reviewing the security architecture map 277

Figure 7.6 – Network impact mitigation with Azure Service Bus

If you let Azure Event Grid send events to Azure Service Bus, the receiving function can
connect to the bus to read incoming messages. However, you end up with the following:

• You still have a public endpoint that is the bus itself.

• You add an extra service only to satisfy perimeter requirements. This generates extra
costs and extra complexity.

A variant of the preceding is to proxy your Azure Functions with APIM, but here, again,
you have an extra service.

So, you should think twice before enforcing network restrictions in one way or another in
Azure Functions. The latter example naturally leads us on to our next topic, pub/sub and
EDA services.

278 Security Architecture

Security with pub/sub and EDA services
Given the distributed nature of cloud and cloud-native applications, Azure Service Bus,
Azure Event Hubs, and Azure Event Grid are certainly part of 80% of applications. Figure
7.7 shows you how to control the perimeter and how to authenticate against these services:

Figure 7.7 – Securing pub/sub and EDA services

From a perimeter perspective, you can have a fully private SERVICE BUS, EVENT HUB,
or EVENT GRID using APL. Their public endpoints are all proxied by a firewall, which
allows you to define both IP restrictions and Service Endpoints (SEs). Whether your
instance is public or private, you can authenticate using a SAS or using AAD via managed
identities, if the client is hosted on Azure. Or, you can use regular AAD token requests
if the clients are hosted on-premises or in another cloud. We will explain APL, SEs, and
managed identities in detail later in this chapter.

Let's now take a look at various other usual suspects that are part of many Azure solutions.

Exploring other recurrent services
A Content Delivery Network (CDN) is used to speed up static content delivery to
client devices. The delivered contents are often accessible anonymously. Indeed, static
contents (such as JavaScript files, images, and so on), which comprise a user interface,
are usually not highly sensitive. If you do not have any special requirements, you can
use any Azure CDN service. However, should you require specific conditions, you can
use token authentication, but it is only available with Azure CDN Verizon Premium.
Token authentication allows you to define a series of rules that are encrypted with a key
defined, and the rules are stored in the CDN management console. Such rules can be a
combination of HTTP headers, the IP origin of the caller, and so on.

Reviewing the security architecture map 279

Any access to the CDN requires the token to be part of the query string. Should a link be
leaked and used from another context that is not in line with the defined rules, then access
to the resource will be denied by the CDN service. Even with anonymous content, Verizon
CDN helps fight against hotlinking, which is a technique used to abuse CDN instances.
While CDN architectures are built to be robust and resilient against DoS/DDoS, you are
charged for the bandwidth costs, which you could avoid with token authentication.

When it comes to mobile apps, you can rely on Intune, with or without System
Center Configuration Manager (SCCM). Intune can be used for both Mobile Device
Management (MDM) and Mobile Application Management (MAM) purposes. With
MDM, you can verify that client devices belong to your company, as well as to possibly
enroll personal devices (BYOD – Bring Your Own Device). With MAM, you can define
application-level policies, as well as application-level data wiping. For example, you can
perform tasks when a device is lost or stolen, or when employees leave the company and
have employee-owned devices with corporate apps.

APL can also be used with some Azure Cognitive Services (ACS) instances, while
some services can also be self-hosted as containers in a private perimeter of yours. With
regards to authentication, all ACS instances support key-based authentication through the
subscription key, while some of them also support AAD-based authentication.

The entire container stack supports VNet encapsulation, and the Azure Kubernetes
Service (AKS) master API can be private link-enabled, so as to end up with a fully
private AKS.

At last, Azure Logic Apps supports network ACLs and can be proxied by APIM. Note
that like Azure functions, logic apps also have triggers, so the potential problems we
highlighted earlier also apply here. Independently of the inbound traffic, the Logic Apps
runtime can be serverless or self-hosted (that is, an Integrated Service Environment
(ISE)). Here, again, we faced the same considerations that we had for Azure Functions. It's
worth mentioning the relatively high cost of an ISE, which is about $4,700/month, where
once more the serverless tier is very cheap and adjusted to the actual consumption. So,
again, you should pay special attention when privatizing logic apps.

Let's now look at the recurrent data services.

280 Security Architecture

Exploring the recurrent data services security features
In this section, we will see the most frequent data services that are used in probably 80%
of solutions. Figure 7.8 shows that Azure Storage and PaaS databases are part of these
services, while Azure Data Factory (ADF) is often used to import blobs from Azure
Storage and write them to PaaS databases (or other systems):

Figure 7.8 – Securing some recurrent data services

All PaaS databases can now be fully privatized, thanks to the private link feature, which
we will explain later in this chapter. The SQL stack (including Azure SQL Database, SQL
Managed Instance, and Azure Synapse Analytics) can be closely monitored by Advanced
Threat Protection (ATP). ATP is a service that helps you detect (and respond to) security
incidents. It is basically also part of your security posture, since it integrates with Azure
Security Center (ASC) (which we will discuss later).

Reviewing the security architecture map 281

Azure SQL has a Dynamic Data Masking feature that prevents disclose-sensitive
information. For example, a credit card number would be masked with asterisk characters
(in the result of a query) to avoid a service administrator from being able to see all the
digits. Masking relies on masking rules. Ordinary database users will always see the
masked values, unless they are excluded from the rule. Database administrators always see
the unmasked values. In terms of a firewall, a PaaS database supports IP ranges and subnet
whitelisting. We will explain resource firewalls, beyond PaaS services, in the Delving into
the most recurrent Azure security topics section.

In terms of authentication, Azure SQL supports the native SQL authentication mode,
but this is largely superseded by AAD authentication. AAD authentication is done
through managed identities for service-level database access, while user-based access
can be done with user access tokens. This means that user-level security trimming can be
enforced in the database itself. As of December 2020, Cosmos DB does not support AAD
authentication. An alternative is to use managed identities to grant access to the Cosmos
DB keys. Then, you would authenticate to Cosmos DB using the master key, a read-only
key, or resource tokens. Resource tokens represent the most granular way of securing
Cosmos DB. We recommend that you use resource tokens over any other method in a
least-privilege principle approach.

ADF also supports a private link for its inbound endpoints. You should not be confused
with its runtime, which is the process that reads and writes from/to data sources. Therefore,
it won't help to enable a private link to access private data sources. The ADF runtime
hosted by Microsoft is called auto-resolve and is by far the cheapest, easiest, and fastest way
to get started with ADF. However, one downside is that you do not have control over its
network perimeter, so you cannot restrict PaaS databases to your ADF instance only. Azure
Storage considers ADF as a trusted service, but it is the only one so far among the resource
firewalls. This lack of perimeter control often pushes companies to self-host the runtime,
in order to restrict the data source access. Self-hosting the runtime might also help you
reach out to private data sources. At the time of writing, the ADF runtime ships as a
Windows service, so you need at least one Virtual Machine (VM) to host it in production.
(You should use two VMs for high availability.) Of course, self-hosting the runtime has an
impact on the elasticity, costs, and time-to-market.

A more recent possibility, that is still in preview in January 2021, consists of using the
auto-resolve runtime with the managed virtual network option. This allows you to
connect to PaaS services sitting behind private endpoints. At this stage, you still can't
resolve on-premises endpoints but it is a very valid option for Azure-only workloads.

Lastly, the Storage account service is probably the most flexible service, because it
supports private link, AAD, and SAS authentication.

Let's now zoom in on encryption.

282 Security Architecture

Zooming in on encryption
In this section, we will explore the different encryption possibilities, as illustrated
in Figure 7.9:

Figure 7.9 – Encryption in Azure

Azure Key Vault is a central component to store keys, secrets, and certificates. We will
hold off on the HYOK option, which consists of using an owned Hardware Security
Module (HSM) to store keys. HYOK is mostly used with Azure Information Protection
in the context of Office 365, but it is incompatible with most PaaS and FaaS services.
Therefore, we will not explore it further, but at least you know that it exists. This leaves us
with BYOK, which is also referred to as Customer-Managed Keys (CMKs), and SMKs,
which are built-in Microsoft keys. Both encryption modes rely on Azure Key Vault. Again,
you have the following two choices:

• Use the multi-tenant Key Vault offering. This is the out-of-the-box option. It's the
cheapest and the fastest but you must trust Microsoft (to provide this service). You
also must be under regulations that allow the use of FIPS 140-2 Level 2 HSM.

Reviewing the security architecture map 283

• Use an Azure dedicated HSM. This is an isolated, single-tenant offering with FIPS
140-2 Level 3 compliance. The major difference between a dedicated HSM and a
multi-tenant offering is that Microsoft does not have administrative control over the
dedicated HSM. While this is a good fit for pure IaaS workloads, it is incompatible
with many important PaaS services (which include Azure SQL, Azure Storage,
Cosmos DB, and so on). This makes it hard to use in practice.

A key lesson learned from the field is that unless you really have a very strict regulation
that forces you to use a dedicated HSM, you're better off trusting Microsoft and using the
multi-tenant offering of Key Vault (or stay on-premises if you do not trust the platform
and its vendor). Any other option would seriously hinder your Azure journey.

Now that that's been clarified, let's explore the different types of encryption.

Encryption in transit and client-side encryption
Encryption in transit consists of encrypting data as it moves. The most common example
is when a browser connects to a server over HTTPS. For encryption in transit, you may
enforce TLS with all Azure services. As of December 2020, most services are still on TLS
1.2. For public certificates, Azure Key Vault integrates with DigiCert and GlobalSign to
let Key Vault generate and rotate certificates automatically. Alternatively, you can make a
separate certificate creation process, and then import them into Azure Key Vault.

On top of TLS, Azure also makes use of SMB 3.0 for Azure Files. Other than for deploying
web apps, there is no built-in support of FTPS or SFTP, but there are some marketplace
offerings. Microsoft also proposed an interesting alternative (https://docs.
microsoft.com/samples/azure-samples/sftp-creation-template/
sftp-on-azure/) using Azure Container Instances. For client-side encryption, which
consists of encrypting data on the sender's side, you can also leverage Azure Key Vault,
which has special APIs for key operations. More specifically, you can wrap the Content
Encryption Key (CEK) with a Key Encryption Key (KEK).

We will now look at encryption at rest.

https://docs.microsoft.com/samples/azure-samples/sftp-creation-template/sftp-on-azure/
https://docs.microsoft.com/samples/azure-samples/sftp-creation-template/sftp-on-azure/
https://docs.microsoft.com/samples/azure-samples/sftp-creation-template/sftp-on-azure/

284 Security Architecture

Encryption at rest
Encryption at rest consists of encrypting stored data. The purpose is to avoid disclosing
sensitive information if unexpected (logical or physical) access to the data store occurs. A
popular example of this is Microsoft's BitLocker, a full-volume encryption that's based on
the Advanced Encryption Standard (AES) encryption module. Azure SQL and Synapse
Analytics make use of Transparent Data Encryption (TDE), which supports both SMK
and CMK. When using SMK, TDE is enabled by default. When using CMK, you must first
generate and store your key, and then assign the key to the TDE engine. If you plan to use
CMK, try to do it from the start, because switching from CMK to SMK might not always
be possible. Figure 7.10 illustrates encryption at rest:

Figure 7.10 – Encryption at rest

Azure SQL and SQL Managed Instance also support Always Encrypted, which can be
used together with TDE. Always Encrypted leverages client-side encryption so that only
an encrypted Data Encryption Key (DEK) is stored inside the database. The KEK used
to encrypt the DEK is stored outside the database, such as with Azure Key Vault, and it
is made available to the Always Encrypted service. The purpose of Always Encrypted
is to prevent database administrators from viewing sensitive data. Additionally, Always
Encrypted enables encryption in use, which we will tackle in the next section.

All the other data services have their own encryption at rest mechanism, and most of
them can be used with CMK. It's worth mentioning that Azure Storage can use storage-
level keys (by default), as well as encryption scopes, which are still in preview (as of
December 2020). Encryption scopes give you more granular encryption by leveraging
blob- or container-level keys. The primary use case is to store multi-tenant data in a single
storage account. Of course, this could also be achieved with different storage accounts,
providing the number of customers is limited.

We will now explore encryption in use.

Reviewing the security architecture map 285

Encryption in use
Encryption in use mostly consists of encrypting in-memory data. It is part of a broader
Trusted Computing initiative, which is also referred to as Confidential Computing. It
complements encryption in transit (data in movement) and encryption at rest (stored
data). Both are very handy, but they leave in-memory data unencrypted, making it
vulnerable to server attacks (such as memory dumps). Encryption in use relies on
Trusted Environment Execution (TEE) and is a hardware-level encryption technique.
TEE ensures application enclaves where the code executes. Figure 7.11 shows the Azure
confidential computing landscape, which will probably grow over time:

Figure 7.11 – Encryption in use

Confidential computing is rather recent in Azure (most services are still in preview as of
December 2020). Nevertheless, since this encryption technique is based on specialized
hardware, Azure ships the DCsv2 VM series. The same node type can be used with AKS
node pools, which brings confidential containers to AKS. Microsoft partners with third
parties to enable the containers. The Open Enclave (OE; https://openenclave.
io/sdk/) SDK lets C and C++ developers write custom code that deals with enclaves
and TEE. Finally, Azure Attestation is a cross-enclave and multi-tenant service that helps
validate that the enclaves are genuine.

https://openenclave.io/sdk/
https://openenclave.io/sdk/

286 Security Architecture

Managing your security posture
Let's first define what security posture means. Security posture refers to the company's
overall cyber resilience against adverse events. This goes far beyond the cloud, because
it also applies to on-premises environments, which is where most enterprises still have
a larger footprint. Azure comes with many different services to help manage Azure
components, as well as on-premises components. Figure 7.12 shows some of the Azure
services that can empower your security posture:

Figure 7.12 – Security posture in Azure

Let's start with on-premises solutions, such as QRadar, which is often required to
integrate. The integration pattern is almost always the same, with whatever on-premises
solutions you must integrate with (QRadar, Splunk, and so on). You redirect Azure logs
to Azure Event Hubs and let the on-premises solutions ingest these logs. As an Azure
architect, this can greatly simplify your life, because you may argue that your job is done!

Reviewing the security architecture map 287

It's then up to the internal Security Operations Center (SOC) to build the scenarios to
detect and respond to any security incidents. Nevertheless, because you are a conscientious
professional, you do not want to discard native services just like that, and that is why we
recommend you to enable Azure Defender in ASC as the bare minimum. ASC has free
basic coverage, which will highlight some potential security vulnerabilities of your Azure
environment, but Azure Defender covers a broader set of resources. Before you enable
Azure Defender, you can see the types of resources and the associated costs in Figure 7.13:

Figure 7.13 – Azure Defender

Of course, costs vary according to the number of resources you have. You should at least
activate Azure Defender for a trial period to see its added value.

288 Security Architecture

The biggest advantage of ASC is that you have nothing to do but look at its various
dashboards, and then analyze the recommendations. For example, Figure 7.14 shows
the overall compliance of an Azure environment with well-known security standards
and frameworks:

Figure 7.14 – ASC compliance dashboard

As you can see in Figure 7.14, your environment is validated against CIS 1.1.0, PCI, and
security standards, which are all baked into ASC. Note that Azure does not cover these
standards entirely. Additional standards can be added, thanks to the dynamic compliance
packages (https://docs.microsoft.com/azure/security-center/
update-regulatory-compliance-packages).

ASC will also highlight resource-level security issues and will guide you to a remediation
process, or it will offer to remediate the problem for you automatically. Figure 7.15 shows
such resource-level issues:

Figure 7.15 – Resource-level security issues

https://docs.microsoft.com/azure/security-center/update-regulatory-compliance-packages
https://docs.microsoft.com/azure/security-center/update-regulatory-compliance-packages

Reviewing the security architecture map 289

In our example, the warning is Access to App Services should be restricted, and
non-compliant web apps (obfuscated here) are listed, which lets you drill down into the
problem. The warning shown in Figure 7.15 is raised because the web apps do not have a
network restriction mechanism. ASC lets you track down these kinds of issues very easily.
Enabling Azure Defender is the best way to start a security audit.

On top of ASC, you can also look at Azure Sentinel, a native Security Information and
Event Management (SIEM) service, which is multi-cloud and usable on-premises. If you
do not already have a SIEM, such as QRadar, it is definitely worthwhile to monitor your
environment with Azure Sentinel. The major difference between ASC and Azure Sentinel
is the fact that ASC inspects your configuration, while Azure Sentinel performs a real-
time attack detection. Note that ASC and Azure Sentinel have a few overlapping features,
but they can be used together for better security. Azure Sentinel allows you to leverage
machine learning to prevent noise and to build a security monitoring platform that is
tailor-made to your environment.

As we mentioned in the introduction chapter, cloud-native security means that you embed
security controls and practices right into your CI/CD platform. Azure DevOps services
and servers (the on-premises version) can be used together with static code and open
source library scanners.

JFrog is a third-party product that has a robust offering in that matter, as well as
in-container image scanning. AzSK (Secure DevOps Kit for Azure) is a free framework
that Microsoft uses internally to enforce some security policies against the configuration
of Azure services. AzSK's primary strength is to focus on PaaS and FaaS, while ASC
initially focused on IaaS. Since ASC also covers more PaaS and FaaS workloads, the
interest in using AzSK is reduced. However, it can still be handy to integrate the AzSK
extension, which is available for free on the Azure DevOps marketplace (https://
marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-
task). AzSK has built-in strict policies that can help you find vulnerabilities in ARM
templates, right from the CI build, which is very early in the development life cycle.

A very important pillar (which we already covered in previous chapters) is Azure Policy,
which allows you to monitor (or prevent) deviations. Azure Arc even makes it possible to
enforce Azure policies across clouds and on-premises, so as to enforce both policies and
role-based access control (RBAC) wherever your assets are hosted, providing they are
hosted on VMs or container platforms.

Of course, proper RBAC management is required to strengthen your security posture.
Let's now look at how to set up that identity in the next section.

https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task

290 Security Architecture

Zooming in on identity
As stated in the introduction, identity is the primary layer in cloud and cloud-native
security. This is even more true when the cloud provider is a public cloud provider. We have
seen that Azure features a solid collection of network services and features. We also depicted
the hub and spoke topology, which is very common and very network-centric. However, in
Chapter 4, Infrastructure Deployment, we explained the Azure Resource Manager (ARM)
endpoint. This endpoint is fully public and cannot be isolated from the internet, which means
you are never completely isolated from the internet. Figure 7.16 illustrates this:

Figure 7.16 – Internet exposure of the ARM endpoint

We see that AAD itself and the ARM endpoint are both 100% internet-facing. AAD
enforces RBAC to allow or deny an operation over your Azure infrastructure. Every
operation performed by an administrator (using the Azure portal) will cause the portal
to call the ARM endpoint on behalf of the logged-in user. You may enforce Multi-Factor
Authentication (MFA) and even advanced conditional access policies that would prohibit
the usage of the portal from outside the company perimeter. That's all fine, but all of this
fully remains an integral part of the identity realm.

Reviewing the security architecture map 291

Even better, conditional access policies, which can trigger MFA or even deny an operation,
do not apply to the so-called Client Credentials Grant, an OAuth2 flow used in unattended
mode. This concretely means that if a service principal has too broad permissions, malicious
use of it could totally defeat your network layer. By the way, this is not specific to Azure,
because the same applies to AWS CloudFormation. The message we want to convey here is
that stacking network layers is not the best security approach in the cloud. It may give you
a false impression of security. You're better off focusing on identity, making sure to adopt
a Least-Privilege Approach (LPA), as well as to rotate credentials and closely monitor the
activity logs. You must switch from network-in-depth to identity-in-depth.

Let's now explore some of the identity features that are available in Azure (see Figure 7.17):

Figure 7.17 – Zooming in on identity features

292 Security Architecture

Needless to say, AAD is the cornerstone of identity in Azure. AAD enables hybrid
identities through Azure AD Connect, an on-premises solution that is used to
synchronize Active Directory identities with AAD, as well as to deploy Active Directory
Federation Services (ADFS). ADFS lets you establish a federation between your premises
and AAD (among others). When users log in, they are redirected to the ADFS login page
(in your perimeter) and are prompted for their credentials, which are validated against
your on-premises Active Directory. This makes your ADFS a single point of failure,
because in such a setup, user passwords are not synced with AAD. Thus, credential
validation can only be performed against your on-premises directory.

Azure Active Directory Pass-through Authentication is an alternative that consists of
validating user credentials on-premises. It also validates credentials online, should your
on-premises login page not be available. From a pure authentication perspective, it is a
more robust approach than ADFS, but it requires user passwords to be synced with AAD,
which is often still considered unwise by many organizations. You can also go full cloud
and only use AAD.

Conditional Access is available in AAD P1 and P2. It allows you to set up conditional access
policies to prohibit a specific activity, as well as to trigger MFA (according to rules that you
define). It is a very powerful engine. We briefly introduced it at the beginning of this section,
when explaining why identity remains the most important layer in the cloud. You may target
conditional access policies toward specific users or groups, or to specific apps.

In AAD P2, you can leverage AAD Privileged Identity Management (PIM) to only
elevate user privileges (RBAC) when required. This is completely in line with the least-
privilege principle. AAD PIM keeps track of elevation requests and only grants higher
privileges for a certain duration. Users must justify the reason why they need more
privileges and approvals can be enforced.

Regarding resource access, we already mentioned SAS tokens and managed identities,
which we will explore in depth later in this chapter.

When it comes to modern authentication, we often refer to OpenID Connect (OIDC).
OIDC is an identity layer on top of OAuth2, which is much older. Both OAuth2 and OIDC
are pure internet-based protocols, hence the reason why they are typically not very well-
known by on-premises security architects. AAD and AAD B2C are both native services
that do fully support OIDC. Identity Server, Auth0, and Okta are typical alternatives,
although AAD will always remain in the picture, no matter what setup you have.

Reviewing the security architecture map 293

To leverage AAD and AAD B2C endpoints, as well as any Microsoft identity, developers
should use the Microsoft Authentication Library (MSAL). You also may still
occasionally see the Active Directory Authentication Library (ADAL), which has now
become legacy, but it is still heavily used today. In OIDC, it is important to understand
the different authentication and authorization flows, and more importantly, unattended
flows, which can represent a risk to your environment. All user-based flows are subject
to conditional access policies (if any). You have a ton of means to control your end user
identities. The following are two unattended flows:

• The Resource Owner Password Credentials grant: We could compare this grant
with service accounts or technical accounts that we use on-premises. For example,
you can have an application pool identity on IIS. It is like a user identity, with a
username and a password, but is not used by end users. This grant is also subject to
conditional access policies.

• The Client Credentials grant: This grant type is used for service-to-service
communication, and it is not at all related to user identity. The credentials can be
a pair of client ID/client secret or client ID/certificate. This grant is not subject to
conditional access policies.

The Client Credentials grant is by far the most dangerous one, but it is also inevitable, so
you can't simply forbid it. There are countless scenarios that require this grant, including
integrating with QRadar, Splunk, and Dynatrace, to name a few. However, if a malicious
insider has access to a pair of credentials, they can make use of them from anywhere in
the world and from any device. They will be able to request an access token to AAD and
talk to the ARM endpoint (because it is public, independent of your network plumbing) to
manipulate your environment. That is why it is key for you to have a frequent rotation of
such credentials, as well as adopting the least-privilege principle.

You should also monitor the usage of such identities more closely. Managed identities also
leverage the Client Credentials grant, but the good news is that the so-called credentials
cannot be leaked, so you should use them as much as possible.

On that topic, let's now explore managed identities in depth.

294 Security Architecture

Delving into the most recurrent Azure security
topics
In this section, we will focus on the most recurrent security features, which are highly
discussed and that you will surely be confronted with. They are also not typical of the
traditional on-premises security arsenal, which often makes security experts clueless on
the matter. After reading this section, you will be more familiar and more confident in any
upcoming security conversations. Let's start with Azure managed identities.

Exploring Azure managed identities in depth
Azure managed identities solve a problem that was around for ages: storing credentials.
We know that we can use Azure Key Vault to store credentials, but we also know that you
need another pair of credentials to access the credentials stored in Key Vault.

Where do you store them? We have a chicken and egg problem. That is exactly what
managed identities solve. With managed identities, Azure will automatically generate
a pair of credentials and make them available to the execution environment when
requested. There is no need to manage or store these credentials anymore. The application
will receive them on request. Moreover, these credentials can only be used from within
the application itself, through an internal endpoint that cannot be accessed outside of the
application. Figure 7.18 shows how managed identities work:

Figure 7.18 – Managed identities

Delving into the most recurrent Azure security topics 295

For example, if you have two different Azure Functions apps, with Managed System
Identity (MSI) enabled, they will each have the following environment variables defined:

• MSI_ENDPOINT: This could be http://127.0.0.1:41772/MSI/token/ for
one function app and http://127.0.0.1:41773/MSI/token/ for the other.

• MSI_SECRET: The secret generated by Azure for this service instance.

• IDENTITY_ENDPOINT and IDENTITY_HEADER: The same as the preceding
variable, but it has different names because of a change in the way a token can
be requested.

The following non-exhaustive list is of Azure hosting services that can be MSI-enabled:

• An app service

• A function app

• A VM

• A container running in AKS through AAD pod identities

• A container instance

• A data factory pipeline

The aforementioned list is not exhaustive, and it keeps evolving over time. Similarly,
the number of Azure resources (that support AAD authentication) increases over time.
Managed identities are assigned a role against the target resource, through Azure RBAC.
However, not every Azure resource supports the managed identity model (for example,
Azure Cosmos DB). In such a situation, you have the following two options:

• Store the Cosmos DB access key into Azure Key Vault, enable managed identities
for the client app, and grant the managed identity access to Key Vault. With this
setup, the client app is able to pull the access key from the vault and can authenticate
against Cosmos DB.

• Enable managed identities for the client app and grant it an RBAC role over the
target resource. In our example, the Cosmos DB Account Reader role could be
granted, to let the app retrieve the access key through the ARM endpoint (instead of
pulling it from Key Vault).

Whatever solution you choose, you do not have to store credentials anywhere. As a best
practice, managed identities should always be preferred over storing credentials or using
another authentication mechanism. Note that managed identities come in two flavors:
user-assigned and system-assigned.

296 Security Architecture

With the system-assigned approach, the identity is automatically created and assigned by
Azure to a given service. It means that you have a 1:1 mapping. Each service has its own
identity. With the user-assigned approach, the identity object is a separate resource that
can be assigned to one or more services. In both cases, you can manage these identities
as if they were users or groups. You can add them to existing groups and grant the group
access to the target resources.

Adding managed identities to groups allows you to prevent ad hoc role assignments. On
the other hand, there is no out-of-the-box ARM template support to automate this process
for system-assigned identities. This can be done through Azure CLI or PowerShell, but it
requires permission to manage users and groups. This is where user-assigned identities
can bring you the following benefits:

• You can pre-create a user-assigned identity as a separate object, and then add it to a
group that has been granted the necessary permissions.

• You can use ARM templates to associate the user-assigned identity to a resource.

• In some very dynamic scenarios, such as having dynamic ACIs (or containers
within AKS), user-assigned identities are a better fit. They are already granted
access to the target resource(s), prior to the launch of the application code. With
system-assigned identities, you should still grant access or add it to a group once the
resource is provisioned. This is not ideal for extremely dynamic workloads.

Important note
Even if this may seem obvious, we want to draw your attention to the fact that
managed identities are only for Azure-to-Azure authentication. They cannot
be used from applications running outside of Azure. Another aspect to keep in
mind is that managed identities are associated with a tenant (AAD). Moving a
subscription with resources that have managed identities to another directory
will not create these identity objects in the target tenant.

Let's now have a look at another recurrent way of authenticating against a target
Azure resource.

Delving into the most recurrent Azure security topics 297

Demystifying SAS
SASes have been in use in Azure for quite a long time, although they tend to be gradually
replaced by AAD OAuth tokens. They are still typically used with Azure Service Bus,
Azure Storage, and Azure Event Hubs (to name a few). SAS is Hash-Based Message
Authentication Code (HMAC)-SHA256 that contains the encrypted hashed value of
the query string parameters. HMAC is often used with digital signatures. To illustrate
this with a concrete example, let's explore the following signature, which is an example of
authentication against Azure Service Bus, to create a new subscription:

Authorization: SharedAccessSignature
sr=https%3A%2F%2Fthemappbook.servicebus.windows.net%2Fdatasets%
2FSubscriptions%2Faci-large2%2F&sig=hc1TVmzT%2BQrojnQN6vjwC9CtL
3WcPKVU01QqdABUVjY%3D&se=1608650456&skn=key

We see that the SAS token is transmitted over the Authorization HTTP request
header. In this case, it has the following four parameters:

• sr: The service resource endpoint that is targeted by the request. In this case, we
target https://themapbook.servicebus.windows.net/datasets/
Subscriptions/.

• se: This is the epoch expiration time of the SAS.

• sig: This is the signature, meaning that it's the Base64-encoded hash value of both
sr and se, combined and separated by a line feed.

• snk: The name of the symmetric key that was used to compute the HMAC.

The sig parameter is received by the resource server, which recomputes it given the
sr and se values it received in clear text. The resource server compares it with the
recalculated value, and if they match, the server authorizes the request. If not, it rejects the
request with a 401 return code.

The SAS computation process involves both hashing and encryption. This makes it robust
against a man-in-the-middle attack, because the symmetric key is not transmitted over
the wire. Tampering with the request would inevitably result in another hash value on the
resource side, which would lead to a hash mismatch. Thus, the request would be denied by
the resource server. So, the SAS mechanism is pretty robust. However, keep in mind the
following aspects:

• The symmetric keys that are used to encrypt the hash value must be kept secret and
should not be leaked.

298 Security Architecture

• Anyone that has a pointer with a SAS key will be able to access the resource. This is
also true with OAuth2 access tokens. If you find the keys to a house and you know
its location, you can enter even if you're not the owner.

With the aforementioned points in mind, you should apply the following principles:

• Plan for frequent key rotations.

• Plan for short SAS lifetimes. Often, it is possible to generate SAS that only has a
lifetime of a few minutes. If that is enough time to perform the operation, you
should not make it last longer. A leaked expired SAS is not a risk anymore.

• Plan for an LPA. Capabilities here depend on the resource server. For example,
with Azure Service Bus, you can create custom shared access policies that let you
define keys for read-only or write-only. With Azure Storage, you have much more
granularity that you can use to your advantage, to implement your LPA.

People often wonder why Azure services that support SAS authentication have two keys:
primary and secondary. This is to accommodate key rotation. To rotate keys without
disrupting clients, you should follow this sequence:

1. Copy the primary key value into the secondary key.

2. Regenerate a new primary key. While you are doing this, your clients can keep using
their old primary key.

3. Update clients to use the new primary key.

4. Rotate the secondary key to invalidate the old primary key.

Executing the preceding steps in this sequence will ensure a smooth key rotation.

Understanding APL and its impact on network flows
APL and Azure Private Endpoint (APE) are closely related and provide long-awaited
capabilities. The purpose of APL and APE is to remove public endpoints from well-known
PaaS storage services, such as Azure Storage and Azure SQL. However, they can also
isolate hosting services (such as Azure App Service) from the internet. When APE is
created in a subnet of your choice, a system route of /32 is created to APL, which proxies
the target resource. Figure 7.19 shows how APL and APE work for an app service:

Delving into the most recurrent Azure security topics 299

Figure 7.19 – APL and APE

By design, an app service is publicly accessible over the internet. With APL, you can hide
it behind a private IP address, for which you designate the target subnet. Every consumer
must be in a network perimeter that can reach out to that IP address. A private DNS zone
hosting the private DNS records must also be associated with each consumer VNet, to
resolve the private link endpoint.

In Figure 7.19, we connect to APE from a subnet that is in the same VNet. You can of
course connect from anywhere, providing connectivity is established across VNets
(remember the hub and spoke). We clearly see that the private link-enabled resource, in
this case, the app service, is not itself inside the VNet. This means that for the time being,
only inbound traffic is controlled, not outbound. If our application is hosted on an app
service or an Azure function, the outbound traffic will still use Azure system routes.

300 Security Architecture

So, keep in mind that enabling APL for a service does not have any impact on its
outbound traffic. This can be mitigated by implementing App Service VNet integration
on top of APL, or by running the app service in an ASE. Moreover, APE comes with the
following limitations:

• NSGs do not apply to private endpoints, which clearly means that associating an
NSG with a subnet that contains APE will have no effect.

• User-defined routes do not apply to private endpoints. This is the same as the
preceding point.

This means that from a target perspective, there is not much you can control. The inbound
traffic will skip both NSGs and UDRs, meaning that it won't be routed to the hub. It
is, therefore, an exception to the way a typical hub and spoke topology works. Security
people assume that both inbound and outbound flows will all be tracked by the NVA or
Azure Firewall. So, from a target perspective, this assumption is wrong. Basically, you
must start from the consumers and give APE and APL specific care. There are a number
of mitigation scenarios described by Microsoft at https://docs.microsoft.com/
azure/private-link/inspect-traffic-with-azure-firewall that let you
better define how to control APE and APL.

APL also comes with numerous trade-offs and/or limitations (as of December 2020).
The following are a few example limitations:

• When enabling a private link for Azure Container Registry, you cannot perform
image vulnerability scanning with ASC anymore.

• When a private link is enabled for a resource, other Azure services that are not
VNet-integrated or self-hosted cannot connect to that resource anymore, except for
the so-called trusted services. The problem is that not every resource supports these
trusted services. For example, Azure Storage's firewall can whitelist trusted services,
but not Azure SQL or Azure Cosmos DB. This may lead to quite complex and
convoluted architectures.

As a precautionary measure, you should always double-check the limitations/drawbacks that
may apply when using a private link against a particular resource, and the potential impact
on the other components of the solution. Also, something to keep in mind with a private
link is that it does not really remove the public endpoints; it just changes the behavior of
their firewall. This also varies by service. Here are a few examples of such variations:

• A private link applied to App Service and Azure Functions denies all traffic against
the public endpoint by default.

https://docs.microsoft.com/azure/private-link/inspect-traffic-with-azure-firewall
https://docs.microsoft.com/azure/private-link/inspect-traffic-with-azure-firewall

Delving into the most recurrent Azure security topics 301

• A private link applied to a Storage account leaves the public endpoint available. It is
up to the cloud consumer to deny all public traffic (if desired).

• A private link applied to Event Hubs sets the firewall to accept only traffic from
selected networks, which means everything by default.

You should not assume that enabling a private link will automatically deny all public
traffic; it is just an opportunity to deny it all. This leads us to our next section, the
resource firewalls.

Understanding Azure resource firewalls
Resource firewalls are another very common topic with regards to Azure. By resource
firewalls, we mean the Azure Storage firewall, Azure SQL firewall, Azure Cosmos DB
firewall, Azure Container Registry firewall, and so on. At the time of writing, APL and
resource firewalls are mutually exclusive. When a private link is enabled for a resource,
every actor that can connect will be authorized by the resource. Of course, you may block
the traffic in Azure Firewall or your NVA, but not at the level of the resource itself. Azure
resource firewalls apply only to the public endpoints of the PaaS resources. Their feature
set may vary from one service to another, but in general, they let you do the following:

• Whitelist individual IP addresses or CIDR.

• Whitelist VNet subnets through SEs.

• Define exceptions, which often differ from one service to another. Azure Storage is
the most comprehensive firewall from that perspective, but it is also very permissive
by default, because no firewall rule is enforced by default. Some exceptions might
also invalidate the other rules. For example, in Azure SQL, you have the possibility
to allow Azure services and resources to access the server, which somehow invalidates
a more restrictive rule. You must pay attention to the exceptions that you make.

SEs are the ancestors of APL. The key difference between SEs and a private link is that
with SEs, the traffic still leaves the VNet to hit the public IP of the PaaS resource. With
private links, the traffic remains 100% internal to the VNet, and you can leverage private
links with on-premises consumers, unlike with SEs. One of the only benefits of SEs is that
you do not have to do anything DNS-wise, because they use the out-of-the-box public
Azure DNS, while private links require the use of an extra Azure Private DNS zone.

To be cloud-native, firewall rules should be deployed through CI/CD declaratively or
imperatively and enforced through Azure Policy to prevent or control deviations.

Let's now review our Contoso use case and add some security bits to it.

302 Security Architecture

Adding the security bits to our Contoso
use case
In this section, we will review our Contoso use case that we started in Chapter 2, Solution
Architecture, and improved in Chapter 5, Application Architecture. However, none of our
diagrams included security-specific portions. It is time to fix this and see where to use
some of the features that we have explained throughout this chapter. Figure 7.20 illustrates
what we ended up with in Chapter 5, Application Architecture:

Figure 7.20 – Reminder of the Contoso use case from Chapter 5

Adding the security bits to our Contoso use case 303

As you can see, there is nothing specific about security. For the sake of simplicity and
brevity, we will get rid of the Power BI and Stream Analytics services. So, our new
functional flow is now as shown in Figure 7.21:

Figure 7.21 – Revisited flow without Stream Analytics and Power BI

For the security bits, we are interested in the interactions between the components,
to understand how we can apply a least-privilege principle for this solution. We see
the following:

• The orchestrator interacts with both the service bus and the event hub.

• Our subscribers interact with the service bus, and some of them must be able to
provision ACIs dynamically. So, they also need some write permissions.

• Our ACIs, whether dynamic or pre-provisioned, must be able to read messages
from the service bus, and then report their state via a callback URL. They also read
input blobs and write output blobs. These blobs represent our data.

304 Security Architecture

A serverless-only version of this solution is shown in Figure 7.22:

Figure 7.22 – Serverless-only solution

All our interactions run over the public internet. Remember that serverless usually implies
that you have no control over the execution environment, meaning there is no (or little)
possibility to apply firewall rules at a data level, and there is also no possibility to reach
out to private endpoints. The security portion of Figure 7.22 mostly relies on identity and
encryption. Let's see it step by step, as follows:

1. Resource access is entirely ensured by managed identities. We use both system and
user identities.

Adding the security bits to our Contoso use case 305

2. Our orchestration block has its own function app, with a system identity that is
granted the topic data sender and event hub data sender. The orchestrator must
send messages to both the service bus and event hub.

3. Our handler's function app is a separate app, for better RBAC segregation. Its system
identity is granted the subscription data receiver (service bus). It also needs to
provision ACIs on the fly. For this, we will create a custom RBAC role that allows just
this. At the time of writing, such a role does not exist. It will attach a user identity to
the ACIs, which requires the managed entity operator role against the target identity.

4. Our dynamically provisioned ACIs will make use of an existing user identity. This
identity is granted the roles of subscription data receiver and blob data owner, because
it needs to read and write blobs. The ACIs do not expose any inbound port, but they
need to reach out to Azure Storage. We use a user identity instead of a system identity,
because we do not want to create too many identities for these ephemeral instances.
Also, the necessary permissions are already granted to the identity.

5. Encryption in transit happens over TLS 1.2 for all communications.

6. Encryption at rest is ensured with a CMK, which is stored in the vault.

The pros of this solution are as follows:

• This is the cheapest possible solution. (It could be only a few dollars per month.) It
is also the easiest and fastest, in terms of deployment.

• All credentials are entirely managed and rotated by Azure itself. Moreover, these
credentials can only be used from the services themselves. The only residual risk is
the code itself, which could be vulnerable. This could be addressed with a pen test.

• Roles are reduced to the strict minimum required, so our least-privilege principle is
well respected.

• Encryption in transit and at rest are both ensured.

The cons of this solution are as follows:

• Our storage account is internet-facing.

• Our orchestrator (HTTP trigger) is also internet-facing.

We could mitigate the second item by putting the orchestrator behind an API gateway, and
then we could enforce a few extra policies and/or a WAF. For the data aspect, it is trickier.
Having a public storage account might be acceptable, depending on the data classification.
We may also wonder what the exact risk is that we are taking. A storage account is already
a hardened service, with only port 443 opened (because we can close 80). It has an Azure
API around it with an intended use.

306 Security Architecture

Brute forcing our identity piece is useless because we know that managed identities can
only be used from within the services themselves. We do not make use of the storage keys,
and we can monitor who/what attempts to list the keys (and rotate them if required).
Running DoS/DDoS attacks against a storage account is rather something that Microsoft
must deal with. We use our own DEK, which reduces the data exploitation (should the
data be leaked). So, this might just be good enough. Here, we had a network-free solution.

However, to be comprehensive and because we know the network still remains the
primary layer for most security folks, Figure 7.23 shows an alternative, with everything
fully privatized. Of course, as we explained before, costs and complexity rise:

Figure 7.23 – Network-centric approach

Adding the security bits to our Contoso use case 307

In this architecture, we isolate everything from the internet. The identity and encryption
pieces remain unchanged. The following aspects are different:

• All our PaaS data services are private link-enabled, meaning that the inbound
connectivity is fully private. We have a dedicated small subnet for all our private
endpoints. Note that Azure Storage still allows public connectivity, but it denies
everything by default.

• We run our function apps on an ILB ASE. In the app settings, we point to the
specific DNS endpoint that allows function apps to find private link-enabled
services. We take a /24 subnet size, as recommended by Microsoft.

• Our container instances sit in a separate subnet. Here again, we take a /24 subnet size.

The pros of this solution are as follows:

• We have no more public-facing endpoints.

• We keep a good identity layer.

• Combining both layers makes it stronger because we reduce the number of
attack vectors.

• This fits with the hub and spoke topology, although we considered it as a standalone
solution in this diagram.

• We have dedicated compute with the isolated app service plan, preventing the noisy
neighbor effect of serverless compute.

The cons of this solution are as follows:

• Costs rise with the ILB ASE and the isolated App Service plan, even if we share the
plan across function apps. With the current Azure offering, only for the ILB ASE
and the isolated App Service plan, we can count around $1,800/month (for a single
instance of the plan). In the future, the $1,000 monthly flat fee should be gone. But
this is still way more expensive than the serverless solution.

• It is more IaC work, since we need to combine a private link, ASE, and all the
DNS plumbing.

• Unlike the previous solution (Figure 7.22), this one is not elastic anymore, because
our subnet sizes will define our capacity. Indeed, concurrent container instances
will need concurrent IP addresses to be available. The same goes for function app
instances. For the serverless solution, we did not have to worry about this because
Microsoft allocates/deallocates resources per the actual consumption needs. In the
current solution, we could be tempted to overscale to avoid being blocked, but we
may waste IP addresses as well.

308 Security Architecture

• Should our solution evolve over time, our network-centric approach might prevent
us from bringing extra features or services, or force us to use premium-only
services, which will dramatically increase costs. For example, should you require
Azure APIM, only the premium tier would be possible. Front Door would also not
be usable in such a setup.

As you can see, the privatization of services often adds more complexity and incurs
higher costs. The message we want to convey here is that you should formulate a real risk
assessment, and you should not impose a one-size-fits-all model, because sooner or later it
becomes an impediment. Keep in mind that PaaS and FaaS services are not mere VMs for
which you are entirely responsible (in terms of security). A cloud-native approach consists
of improving your identity and encryption layers, as well as having an improved security
incident prevention-detection resolution. Let's now recap the chapter.

Summary
In this chapter, we introduced the vast security landscape of Azure, which deserves an
entire dedicated book. We gave you a glimpse into cloud-native security, and what it
implies in terms of mindset and technology choices.

We explained to you why identity is the primary layer of defense in the public cloud,
and we highlighted a few trade-offs that are incurred by a network-centric approach.
A network approach is often the default approach, which is inspired by decades of
traditional security practices on-premises. We saw that Azure has quite a lot of built-in
security features and services that we can use to our advantage not only to secure our
Azure workloads but also to secure other clouds and even on-premises systems.

Lastly, we reviewed our initial Contoso use case, from the eyes of a security architect, by
adding two specific security views to our diagram. By now, you should be better equipped
to tackle Azure-specific security topics as well as to deal with cloud-native applications
that carry their own way of envisioning security.

The next chapter is a recap of what we have learned up to now, as well as an introduction
to some typical industry-specific architectural scenarios.

Finally, we will go back through the architecture of the book, showing many use cases,
per industry, that expand on how the architectural perspectives come together and
result in a cohesive solution in Microsoft Azure.

In this section, the following topic will be covered:

• Chapter 8, Summary and Industry Scenarios

Section 3:
Summary

8
Summary and

Industry Scenarios
In this chapter, we will go back through the architectures covered in the book, showing
various example scenarios per industry that expand on how the architectural perspectives
come together to result in a cohesive solution on Microsoft Azure. The deeper you dive
into the industry architectures that most closely resemble your projects, the wiser and
more prepared and impactful you become.

This chapter covers the following topics:

• Revisiting our architectures

• Automotive and transportation scenarios

• Banking and financial services scenarios

• Gaming scenarios

• Healthcare scenarios

• Manufacturing scenarios

• Oil and gas scenarios

• Retail scenarios

• The unique values of this book

312 Summary and Industry Scenarios

Revisiting our architectures
First, we'll revisit our architectures by summarizing each chapter of the book. This allows
the opportunity to refresh your memory and offer a key appeal from each chapter, one
important takeaway that could greatly impact your cloud architectures.

Sample architecture
In Chapter 1, Getting Started as an Azure Architect, we explained the basic idea behind the
maps in this book, why we're using them, and how you can use them to further explore
architectures. We provided a sample map (see Figure 8.1) to properly explain how the
maps are structured:

Figure 8.1 – Our sample map

The sample map demonstrates the subdomains, concerns, options, and alternatives.
Our larger-level architecture map focuses on the master domain and subdomains. When
we zoomed in, we showed you a fuller map that includes the concerns under a given
subdomain. Next, we browsed the different types of architects and showed you what
makes them unique, different, and valuable.

Then we covered the essential cloud vocabulary, discussing the jargon that is used in this
book. (We used a lot of acronyms with aaS at the end of them.) Then, we discussed what
makes a cloud journey successful, showing the full product life cycle of a cloud solution
and deployment. All of our maps are available as VSD and JPG files on GitHub.

Revisiting our architectures 313

Appeal
As many of our maps would be too large for this book (at their full size),
we ask that you find the VSD and PNG files of the maps on GitHub:
https://github.com/PacktPublishing/The-Azure-
Cloud-Native-Architecture-Mapbook. Open the chapter folder,
and then open the Diagrams and/or Maps folders to find them. Exploring
the larger map files allows you to see all the details and to revisit the maps on
your architecture journey.

Solution architecture
In Chapter 2, Solution Architecture, we dug into our first architecture! We took you on a
long (but hopefully enjoyable) journey through the eyes of a solution architect. See the
architecture in Figure 8.2:

Figure 8.2 – The solution architecture map

https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook
https://github.com/PacktPublishing/The-Azure-Cloud-Native-Architecture-Mapbook

314 Summary and Industry Scenarios

In GitHub, we provided the full architectures as Visio files and PNG images. We then
zoomed in on Systems of Engagement (SoE), Systems of Record (SoR), Systems of
Insight (SoI), and Systems of Integration (SoX).

We covered Event-Driven Architectures (EDAs), cross-cutting concerns, monitoring,
Continuous Integration and Continuous Deployment (CI/CD), identity, connectivity,
governance/compliance, and containerization. In Chapter 2, Solution Architecture, our
zoom-in on Identity looked a little like a baby octopus, but with only four tentacles
(also more orange than the average octopus, if you have the fortune of seeing it in color).
See Figure 8.3:

Figure 8.3 – Zoom in on identity (a baby octopus)

That's when we hit you with a massive solution architecture use case, complete with a
business scenario (Contoso needed yet another configurable workflow tool), reference
architecture, scripts we used, and the full solution (available in GitHub). We also walked
you through the orchestration process. This architecture book got practical fast!

Appeal
Take the time to look through the code of our sample and follow along with
our instructions. Also, follow along with the details about the orchestration
process. You'll learn a lot by going through those steps!

Revisiting our architectures 315

Infrastructure architecture
Chapter 3, Infrastructure Design, revealed our infrastructure architecture map
(see Figure 8.4):

Figure 8.4 – The Azure infrastructure architecture map

We zoomed in on networking, monitoring, high availability, disaster recovery, backup
and restore, and High-Performance Computing (HPC). Then, we gave you a bonus
architecture with the Azure Kubernetes Service (AKS) architecture map, thoroughly
diving into the container infrastructure! Wasn't that a pleasant surprise?

Appeal
AKS is not a service like the others. It comes with its own universe! Do not
underestimate its impact within your infrastructure architecture. Also, keep
in mind that you'll find it very challenging to implement a consistent disaster
recovery-compliant architecture with Functions as a Service (FaaS) and
Platform as a Service (PaaS).

316 Summary and Industry Scenarios

Azure deployment
Next came the chapter you would expect to come after Chapter 3, Infrastructure Design:
Chapter 4, Infrastructure Deployment. There we discussed CI/CD, looking in depth into
the process for the development, build, and release cycles, up to where you deploy on
Azure. Next, we presented the Azure deployment map (see Figure 8.5), and we zoomed
in on scripting (Azure CLI, PowerShell, Cloud Shell), Azure Resource Manager (ARM)
templates, Azure Bicep, and Terraform:

Figure 8.5 – The Azure deployment map

We provided instructions to help you directly get started with your deployments. We then
zoomed in on a full reference architecture that leverages Azure DevOps and native ARM
templates and includes a full Infrastructure as Code (IaC) factory! We cannot stress
enough how important the ARM endpoint is; we thoroughly recommend you embrace
and perfect the art of working with ARM!

Appeal
Read carefully through our sections on ARM and ARM templates. This is an
important way to deploy your application as productively as possible, without
reinventing the wheel. Also, make sure you thoroughly consider Azure Bicep
and Terraform. These tools could change many of your practices! Finally, we
strongly suggest you build out your DevOps processes and tools. If you build out
your CI/CD pipelines, you will ensure you can deploy whenever you need to.

Revisiting our architectures 317

Application architecture
In Chapter 5, Application Architecture, we were able to unravel some common cloud and
cloud-native application patterns. We discussed the pillars of cloud development: DevOps,
CI/CD, and PaaS/FaaS. We then contrasted that with cloud-native development, which
consists of the following pillars: DevOps, microservices, CI/CD, and containers. We
explored the Azure application architecture map (see Figure 8.6) to understand how to
design a cloud-based application:

Figure 8.6 – The application architecture map

We zoomed in on data (although we then covered it extensively in Chapter 6, Data
Architecture) and some key cloud design patterns. We covered CQRS, which stands for
command query responsibility segregation, which segregates the commands (writing)
and querying (reading) to increase speed and scale. The Event Sourcing pattern stores the
events in an event store and publishes them for consumption.

Our cloud-native design patterns included the Anti-Corruption Layer, Ambassador,
Circuit Breaker, Retry, and Cache-Aside patterns. Our API patterns included Gateway
Aggregation, Gateway Routing, Gateway Offloading, and Backends for Frontends. We
also covered the SAGA pattern (with which you can manage data across your
microservices). Next, we covered EDAs, and we drilled into how you would build your
own microservices solution.

318 Summary and Industry Scenarios

Appeal
We cannot fully express the importance of the ecosystem in cloud and cloud-
native applications. As an application architect, make sure you learn and
leverage the Azure and K8s ecosystems. Don't fall into the trap of trying to
reinvent the wheel (or deny that the wheel needs to exist).

Data architecture
Chapter 6, Data Architecture, showed us five top-level groups (see Figure 8.7): big data,
modern, traditional, Artificial Intelligence (AI), and other (which comprises our
cross-cutting concerns):

Figure 8.7 – The data architecture map (reduced)

Revisiting our architectures 319

We analyzed the various data practices, and then we looked into the details of online
analytical processing (OLAP), online transaction processing (OLTP), extract,
transform, and load (ETL), relational database management system (RDBMS), extract,
load, and transform (ELT), NoSQL, storing keys/values, and document stores. We then
dove into the big data services, including for open source (HDInsight), ingestion (IoT and
Event Hubs), and analytics. See Figure 8.8:

Figure 8.8 – Big data in Azure

We then covered ingesting big data, big data analytics, AI, machine learning, and deep
learning. Our cross-cutting concerns included data migration, governance, and business-
to-business data sharing. We ended with a near-real-time data streaming use case, which
provided a finished simulator for you to browse. We included instructions for setting up
your Power BI workspace, your Event Hubs instance, and your Stream Analytics instance.

Appeal
Make sure you try out our use case with Power BI. Once you see how easy it is
to build and manage a dashboard, you'll start to imagine all the times you could
leverage Power BI in your solutions.

320 Summary and Industry Scenarios

Security architecture
Chapter 7, Security Architecture, introduced cloud-native security and took us on a tour of
the security architecture map (see Figure 8.9):

Figure 8.9 – The security architecture map

We discussed how to add security components to our Contoso use case. We drilled
down into recurrent services, the network layer, the identity layer, recurrent data services
(focusing on the security features), encryption (bring your own key, host your own key,
and service-managed keys), and your security posture.

Appeal
Stacking network layers is not the best security approach in the cloud; it might
give you a false impression of security. Remember that identity is by far the
most important security layer!

Finally, Chapter 8, Summary and Industry Scenarios, made you smile a little (hopefully).
Let's face it; after reading this crazy book, you kind of earned the chance to smile.
You're still reading the chapter, so we won't spoil this chapter by summarizing it for you.
Moving on…

Automotive and transportation scenarios 321

Visiting the verticals
Next, we're going to browse some architectures for our industry verticals so that you
can get a stronger understanding of how these architectures apply to your company,
customers, and/or clients. The industries are listed in alphabetical order (we are a little
strategically biased in what we're calling these verticals).

We warn you: you should expect to see a lot of links to the various industry-based
architectures. Normally, this is a bad idea (to be sent outside the book) because you
shouldn't have to leave a book in order to read it. However, we believe this is the best route
to apply your learning, by testing it with many real customer architectures that go so deep
that, well, if we wrote them ourselves, it would take another book. (But if that's what you
want, it's duly noted!)

Automotive and transportation scenarios
Our three automotive and transportation scenarios build off the lessons we covered in
Chapter 6, Data Architecture. All three of our architectures are fairly lightweight (what
Microsoft currently refers to as solution ideas). They aren't deployable, but they can get
your mind spinning down certain architectural paths to better understand your options.
(We'll see some deployable architectures in our other verticals.) For our transportation
scenarios, we have divided them into one that focuses on AI (predictive insights) and two
that focus on analytics (predictive monitoring and IoT analytics).

Predictive insights with vehicle telematics
Our first architecture digs into applying AI to this industry, while our other two architectures
take a differently flavored approach toward IoT analytics. For our AI scenario, we're looking
to discover predictive insights on the health and driving habits of our vehicle. This impacts
car dealerships, manufacturers, and even how insurance companies can leverage Azure to
better understand their business. The diagnostic events are ingested through Azure Event
Hubs, to Azure Stream Analytics, for Azure Machine Learning to create the core predictive
analytics solutions. The data then moves through Blob storage (on to HDInsight and Data
Factory), while being consumed through a constantly updated Power BI dashboard.

More information
You can further explore this Microsoft AI architecture for the automotive
industry here:

Predictive Insights with Vehicle Telematics: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
predictive-insights-with-vehicle-telematics

https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predictive-insights-with-vehicle-telematics
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predictive-insights-with-vehicle-telematics
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predictive-insights-with-vehicle-telematics

322 Summary and Industry Scenarios

Predictive aircraft engine monitoring
Now for our two analytics scenarios. They are similar, but the focus is a little less on the
machine learning aspects and a little more on straightforward analysis. Our predictive
aircraft engine monitoring will analyze our aircraft telemetry to offer predictive
maintenance. Figure 8.10 demonstrates the architecture, which is currently available on
Microsoft's Azure Architecture Center:

Figure 8.10 – The architecture for predictive aircraft engine monitoring

Azure Stream Analytics gives you as close to real-time analysis as you'll get. Azure
Machine Learning predicts your system failures, and Azure SQL Database stores your
prediction results, publishing them to your Power BI dashboard.

Banking and financial services scenarios 323

More information
You can further explore this lightweight Microsoft analytics architecture for the
airline industry here:

Predictive Aircraft Engine Monitoring: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
aircraft-engine-monitoring-for-predictive-
maintenance-in-aerospace

IoT analytics for autonomous driving
For the IoT analytics architecture, Microsoft customers use it to analyze fast-flowing,
high-volume streaming data. For example, Bosch uses this solution to determine real-time
road conditions and current weather information in order to inform autonomous
driving systems!

More information
You can further explore this lightweight Microsoft analytics architecture for the
automotive industry here:

IoT analytics with Azure Data Explorer: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
iot-azure-data-explorer

Banking and financial services scenarios
That brings us to the banking and financial services industries! Our first two architectures
explore an infrastructure deployment scenario (banking system cloud transformation)
and a blockchain scenario that provides on-demand compute (decentralized trust
between banks).

Banking system cloud transformation
For our first architecture in this industry, Banking system cloud transformation on
Azure, we're looking at a deployment that focuses on aspects of the solution's complete
deployment ecosystem, which we first discussed in Chapter 2, Solution Architecture. The
bank uses Docker to deliver the microservices containers to the Kubernetes cluster, which
should be familiar as we saw a similar example in Chapter 3, Infrastructure Design.

https://docs.microsoft.com/azure/architecture/solution-ideas/articles/aircraft-engine-monitoring-for-predictive-maintenance-in-aerospace
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/aircraft-engine-monitoring-for-predictive-maintenance-in-aerospace
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/aircraft-engine-monitoring-for-predictive-maintenance-in-aerospace
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/aircraft-engine-monitoring-for-predictive-maintenance-in-aerospace
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/iot-azure-data-explorer
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/iot-azure-data-explorer
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/iot-azure-data-explorer

324 Summary and Industry Scenarios

This solution also leverages DevOps lessons learned in Chapter 4, Infrastructure Deployment,
including important life cycle considerations, such as load testing and monitoring. It
leverages the Azure container stack, third-party components (Docker, Grafana, and
Prometheus), and open source tooling (Jenkins, KEDA, Apache JMeter, and Redis).

More information
Be sure to see the samples in the Related resources section at the bottom of
the article:

Banking system cloud transformation on Azure: https://docs.
microsoft.com/azure/architecture/example-scenario/
banking/banking-system-cloud-transformation

Decentralized trust using blockchain
Our second architecture really brings to mind the lessons learned in Chapter 3,
Infrastructure Design. This is a blockchain solution, Decentralized trust between banks.
You leverage Virtual Machine Scale Sets (VMSSes) to provide on-demand compute. You
store your private keys in Key Vault and use Load Balancer to spread out the requests.

More information
Be sure to try deploying the Ethereum Proof-of-Authority (PoA) blockchain
demo that's mentioned at the bottom of the architecture article:

Decentralized trust between banks: https://docs.microsoft.
com/azure/architecture/example-scenario/apps/
decentralized-trust

Additional financial services architectures
In the following architectures, you will face AI scenarios (audit risk and business
process management), security (fraud detection), and database (loan chargeoff and
credit risk) scenarios.

https://docs.microsoft.com/azure/architecture/example-scenario/banking/banking-system-cloud-transformation
https://docs.microsoft.com/azure/architecture/example-scenario/banking/banking-system-cloud-transformation
https://docs.microsoft.com/azure/architecture/example-scenario/banking/banking-system-cloud-transformation
https://docs.microsoft.com/azure/architecture/example-scenario/apps/decentralized-trust
https://docs.microsoft.com/azure/architecture/example-scenario/apps/decentralized-trust
https://docs.microsoft.com/azure/architecture/example-scenario/apps/decentralized-trust

Gaming scenarios 325

More information
You can further explore these additional Microsoft architectures for the
banking and financial service industries:

Auditing, risk, and compliance management: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/auditing-and-risk-compliance

Business Process Management: https://docs.microsoft.com/
azure/architecture/solution-ideas/articles/
business-process-management

Real-time fraud detection: https://docs.microsoft.com/azure/
architecture/example-scenario/data/fraud-detection

Loan ChargeOff Prediction with Azure HDInsight Spark Clusters: https://
docs.microsoft.com/azure/architecture/solution-
ideas/articles/loan-chargeoff-prediction-with-
azure-hdinsight-spark-clusters

Loan ChargeOff Prediction with SQL Server: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/loan-chargeoff-prediction-with-sql-server

Loan Credit Risk + Default Modeling: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
loan-credit-risk-analyzer-and-default-modeling

Loan Credit Risk with SQL Server: https://docs.microsoft.com/
azure/architecture/solution-ideas/articles/loan-
credit-risk-with-sql-server

Gaming scenarios
For our gaming architectures, we're launching from our basic data discussions in Chapter
6, Data Architecture. We have three architectures that span two important gaming
scenarios. First, we achieve low latency with a LAMP architecture. Then we'll look at two
architectures that provide different perspectives (open source and full service) on data
architecture for the gaming industry.

https://docs.microsoft.com/azure/architecture/solution-ideas/articles/auditing-and-risk-compliance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/auditing-and-risk-compliance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/auditing-and-risk-compliance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/business-process-management
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/business-process-management
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/business-process-management
https://docs.microsoft.com/azure/architecture/example-scenario/data/fraud-detection
https://docs.microsoft.com/azure/architecture/example-scenario/data/fraud-detection
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-chargeoff-prediction-with-azure-hdinsight-spark-clusters
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-chargeoff-prediction-with-azure-hdinsight-spark-clusters
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-chargeoff-prediction-with-azure-hdinsight-spark-clusters
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-chargeoff-prediction-with-azure-hdinsight-spark-clusters
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-chargeoff-prediction-with-sql-server
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-chargeoff-prediction-with-sql-server
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-chargeoff-prediction-with-sql-server
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-credit-risk-analyzer-and-default-modeling
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-credit-risk-analyzer-and-default-modeling
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-credit-risk-analyzer-and-default-modeling
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-credit-risk-with-sql-server
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-credit-risk-with-sql-server
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/loan-credit-risk-with-sql-server

326 Summary and Industry Scenarios

Low-latency multiplayer gaming
First, you'll explore the open source LAMP architecture, which stands for a specific stack:
a Linux Ubuntu VM (L), Apache web server (A), MySQL (M), and PHP (P). Azure Load
Balancer gives the client the IP address from the DNS. The VMs read info from Azure
Cache for Redis and read/write to/from Azure Database for MySQL.

More information
This architecture provides robust instructions on calculating the
associated costs:

LAMP Gaming Reference Architectures: https://docs.microsoft.
com/gaming/azure/reference-architectures/general-
purpose-lamp

Gaming using MySQL or Cosmos DB
Then we have two sets of similar gaming architectures. The first is open source, leveraging
MySQL and Azure HDInsight to address unpredictable traffic and offer low-latency
gaming experiences with multiplayer capabilities. The second leverages Azure Cosmos
DB, with Azure Databricks, Azure Functions, and Azure Notification Hub (providing the
push notifications).

More information
Both architectures yield similar benefits of elastic scale:

Gaming using Azure Database for MySQL: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
gaming-using-azure-database-for-mysql

Gaming using Cosmos DB: https://docs.microsoft.com/azure/
architecture/solution-ideas/articles/gaming-using-
cosmos-db

Healthcare scenarios
At the time of writing this book, we've been in lockdowns around the world, as we seek
to fight (and survive) the deadly coronavirus. This means that today, healthcare is at the
forefront of technology. Thus, Microsoft has plenty of new architectures for you to peruse!

https://docs.microsoft.com/gaming/azure/reference-architectures/general-purpose-lamp
https://docs.microsoft.com/gaming/azure/reference-architectures/general-purpose-lamp
https://docs.microsoft.com/gaming/azure/reference-architectures/general-purpose-lamp
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/gaming-using-azure-database-for-mysql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/gaming-using-azure-database-for-mysql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/gaming-using-azure-database-for-mysql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/gaming-using-cosmos-db
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/gaming-using-cosmos-db
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/gaming-using-cosmos-db

Healthcare scenarios 327

Building a telehealth system on Azure
Our first two focus areas are in containers and storage, which build on our core lessons
in Chapter 3, Infrastructure Design. Our container-focused architecture is Building a
telehealth system on Azure. This solution provides remote hearing care services! The
patient's information is stored in Azure Database for PostgreSQL, and AKS hosts the app's
logic and allows optimal deployment. Azure Notification Hub is used to notify the patient
of status and contact info, and Azure Functions is used to schedule all tasks.

More information
You'll find a lot of details for this architecture here:

Building a telehealth system on Azure: https://docs.microsoft.
com/azure/architecture/example-scenario/apps/
telehealth-system

Medical data storage architectures
For storage-focused architectures, Medical Data Storage Solutions ingests medical image
data (via Azure Data Factory). The data is stored on Azure Blob storage and analyzed
by the Azure Cognitive Services API. The AI results are stored in Azure Data Lake and
consumed with a Power BI dashboard. Similarly, HIPAA and HITRUST compliant health
data AI ingest the patient data into Azure Blob storage. Event Grid publishes the data to
Azure Functions tasks to process it.

More information
Here are these two storage-oriented medical architectures:

Medical Data Storage Solutions: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
medical-data-storage

HIPAA and HITRUST compliant health data AI: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/security-compliance-blueprint-hipaa-
hitrust-health-data-ai

https://docs.microsoft.com/azure/architecture/example-scenario/apps/telehealth-system
https://docs.microsoft.com/azure/architecture/example-scenario/apps/telehealth-system
https://docs.microsoft.com/azure/architecture/example-scenario/apps/telehealth-system
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/medical-data-storage
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/medical-data-storage
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/medical-data-storage
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/security-compliance-blueprint-hipaa-hitrust-health-data-ai
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/security-compliance-blueprint-hipaa-hitrust-health-data-ai
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/security-compliance-blueprint-hipaa-hitrust-health-data-ai
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/security-compliance-blueprint-hipaa-hitrust-health-data-ai

328 Summary and Industry Scenarios

AI healthcare solutions
In Chapter 6, Data Architecture, we touched on both AI and IoT scenarios.

More information
Take the time to browse through some of these AI healthcare solutions:

Implementing the Azure blueprint for AI:

https://docs.microsoft.com/previous-versions/
azure/industry-marketing/health/sg-healthcare-ai-
blueprint

Population Health Management for Healthcare: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/population-health-management-for-
healthcare

Predict Length of Stay and Patient Flow: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
predict-length-of-stay-and-patient-flow-with-
healthcare-analytics

Remote Patient Monitoring Solutions: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
remote-patient-monitoring

Predicting length of stay using SQL Server R Services
This next architecture is very similar (in goal and final data consumption), but it's
classified as an analytics scenario, as it uses SQL Server R Services.

More information
Review this solution idea:

Predicting Length of Stay in Hospitals: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
predicting-length-of-stay-in-hospitals

Producing and consuming IoT healthcare data
When we covered IoT, we mostly showed you the perspective of ingesting the data
provided by IoT systems. These architectures continue that theme by showing you various
ways to produce and consume IoT data.

https://docs.microsoft.com/previous-versions/azure/industry-marketing/health/sg-healthcare-ai-blueprint
https://docs.microsoft.com/previous-versions/azure/industry-marketing/health/sg-healthcare-ai-blueprint
https://docs.microsoft.com/previous-versions/azure/industry-marketing/health/sg-healthcare-ai-blueprint
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/population-health-management-for-healthcare
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/population-health-management-for-healthcare
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/population-health-management-for-healthcare
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/population-health-management-for-healthcare
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predict-length-of-stay-and-patient-flow-with-healthcare-analytics
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predict-length-of-stay-and-patient-flow-with-healthcare-analytics
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predict-length-of-stay-and-patient-flow-with-healthcare-analytics
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predict-length-of-stay-and-patient-flow-with-healthcare-analytics
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/remote-patient-monitoring
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/remote-patient-monitoring
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/remote-patient-monitoring
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predicting-length-of-stay-in-hospitals
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predicting-length-of-stay-in-hospitals
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predicting-length-of-stay-in-hospitals

Manufacturing scenarios 329

More information
Note that these architectures make a unique collection that represents how IoT
solutions can have an impact during a pandemic:

Contactless IoT interfaces with Azure intelligent edge: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/contactless-interfaces

COVID-19 Safe Solutions with IoT Edge: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
cctv-mask-detection

IoT Connected Platform for COVID-19 detection and prevention: https://
docs.microsoft.com/azure/architecture/solution-
ideas/articles/iot-connected-platform

UVEN smart and secure disinfection and lighting: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/uven-disinfection

Confidential computing on a healthcare platform
Finally, let's look at an architecture that ties into our topics from Chapter 7, Security
Architecture. Confidential computing on a healthcare platform enables a health-based
organization to secure financial data and patient information. The patient's information
is stored in Azure Blob storage. The solution deploys code in an AKS confidential node
(stored in a Redis cache). Azure Container Registry creates and manages the container
image registry.

More information
See the Deploy this scenario section for information about how to practice
implementing this solution:

Confidential computing on a healthcare platform: https://docs.
microsoft.com/azure/architecture/example-scenario/
confidential/healthcare-inference

Manufacturing scenarios
Can the cloud help you improve, build, and deliver your product? Absolutely. To
understand how, let's explore a few key scenarios. We'll explore infrastructure (using IoT
Hub and Azure Blockchain Workbench), industrial IoT analytics, and some important AI
manufacturing scenarios.

https://docs.microsoft.com/azure/architecture/solution-ideas/articles/contactless-interfaces
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/contactless-interfaces
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/contactless-interfaces
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/cctv-mask-detection
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/cctv-mask-detection
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/cctv-mask-detection
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/iot-connected-platform
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/iot-connected-platform
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/iot-connected-platform
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/uven-disinfection
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/uven-disinfection
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/uven-disinfection
https://docs.microsoft.com/azure/architecture/example-scenario/confidential/healthcare-inference
https://docs.microsoft.com/azure/architecture/example-scenario/confidential/healthcare-inference
https://docs.microsoft.com/azure/architecture/example-scenario/confidential/healthcare-inference

330 Summary and Industry Scenarios

Supply chain track and trace
For the manufacturing industry, let's start with a blockchain solution that builds on the
lessons learned in Chapter 3, Infrastructure Design. Supply Chain Track and Chase provides
IoT-enabled monitoring for a supply chain. If you were going to transport refrigerated
goods, then you'd likely have compliance rules to follow (and contractual conditions that
must be met), such as a temperature and humidity range.

More information
This solution begins in IoT Hub, and heavily leverages Azure Blockchain
Workbench:

Supply Chain Track and Trace: https://docs.microsoft.com/
azure/architecture/solution-ideas/articles/supply-
chain-track-and-trace

Industrial IoT analytics
That moves us on to Chapter 6, Data Architecture, for the remaining architectures (moving
from IoT to AI to analytics). Azure Industrial IoT Analytics Guidance provides a detailed
tour of leveraging IoT systems for asset monitoring, processing dashboards, determining
your Overall Equipment Effectiveness (OEE), predictive maintenance, and forecasting.

More information
There are multiple articles in this content set:

Azure Industrial IoT Analytics Guidance: https://docs.microsoft.
com/azure/architecture/guide/iiot-guidance/iiot-
architecture

AI and analytics manufacturing architectures
For the remaining AI and analytics architectures (in our manufacturing vertical), the data
is mostly ingested via Event Hubs, leveraging Azure Stream Analytics to provide near-
real-time analysis on your input stream. Typically, Azure Machine Learning is then used
to build the predictions.

https://docs.microsoft.com/azure/architecture/solution-ideas/articles/supply-chain-track-and-trace
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/supply-chain-track-and-trace
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/supply-chain-track-and-trace
https://docs.microsoft.com/azure/architecture/guide/iiot-guidance/iiot-architecture
https://docs.microsoft.com/azure/architecture/guide/iiot-guidance/iiot-architecture
https://docs.microsoft.com/azure/architecture/guide/iiot-guidance/iiot-architecture

Oil and gas scenarios 331

More information
Please browse the following architectures:

Defect prevention with predictive maintenance: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/defect-prevention-with-predictive-
maintenance

Predictive Maintenance: https://docs.microsoft.com/azure/
architecture/solution-ideas/articles/predictive-
maintenance

Quality Assurance: https://docs.microsoft.com/azure/
architecture/solution-ideas/articles/quality-
assurance

Demand Forecasting for Shipping and Distribution: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/demand-forecasting-for-shipping-and-
distribution

Predictive Aircraft Engine Monitoring: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
aircraft-engine-monitoring-for-predictive-
maintenance-in-aerospace

Oil and gas scenarios
For our oil and gas architectures, we've got a nice variety that spans HPC, analytics, and
IoT-focused scenarios. First, let's unravel the challenge of computing 3D modeling and
seismic data.

Run reservoir simulation software on Azure
Our first scenario focuses heavily on HPC, which ties into what we learned in Chapter 3,
Infrastructure Design. This architecture, Run reservoir simulation software on Azure, allows
you to compute 3D reservoir modeling and visualize seismic data! This includes a sample
INTERSECT simulation from Microsoft customer Schlumberger. The HB-series of high-
performance VMs are deployed as a VMSS, which are multiple, identical VMs that are
able to scale and complete high-performance compute tasks. Azure CycleCloud operates,
manages, schedules, and deploys the big compute clusters.

https://docs.microsoft.com/azure/architecture/solution-ideas/articles/defect-prevention-with-predictive-maintenance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/defect-prevention-with-predictive-maintenance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/defect-prevention-with-predictive-maintenance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/defect-prevention-with-predictive-maintenance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predictive-maintenance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predictive-maintenance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predictive-maintenance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/quality-assurance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/quality-assurance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/quality-assurance
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting-for-shipping-and-distribution
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting-for-shipping-and-distribution
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting-for-shipping-and-distribution
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting-for-shipping-and-distribution
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/aircraft-engine-monitoring-for-predictive-maintenance-in-aerospace
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/aircraft-engine-monitoring-for-predictive-maintenance-in-aerospace
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/aircraft-engine-monitoring-for-predictive-maintenance-in-aerospace
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/aircraft-engine-monitoring-for-predictive-maintenance-in-aerospace

332 Summary and Industry Scenarios

More information
You can deploy this architecture using the example implementation:

Run reservoir simulation software on Azure: https://docs.
microsoft.com/azure/architecture/example-scenario/
infrastructure/reservoir-simulation

Oil and gas tank level forecasting
Next, we have a lighter, analytics-focused architecture. (Microsoft currently calls these
basic architectures solution ideas.) Building off what you learned in Chapter 6, Data
Architecture, Oil and Gas Tank Level Forecasting shows you how you'd prevent tank
spillage and emergency shutdowns (as well as discover hardware malfunctions, schedule
maintenance, detect leaks, and more). The data is ingested through Azure Event Hubs
and analyzed in Azure Stream Analytics, and the forecasts are made in Azure Machine
Learning. Azure Synapse Analytics stores the prediction results, which are then presented
as visualizations in a Power BI dashboard!

More information
Continue reading about this lightweight architecture here:

Oil and Gas Tank Level Forecasting: https://docs.microsoft.com/
azure/architecture/solution-ideas/articles/oil-
and-gas-tank-level-forecasting

IoT monitor and manage loops
Finally, we continue what you learned in Data Architecture with a Microsoft IoT pattern,
IoT monitor and manage loops. This pattern is very applicable for gas pipeline monitoring
and to monitor and control the crude oil cracking process in an oil refinery.

More information
You can further explore this Microsoft architecture here:

IoT monitor and manage loops: https://docs.microsoft.com/
azure/architecture/example-scenario/iot/monitor-
manage-loop

https://docs.microsoft.com/azure/architecture/example-scenario/infrastructure/reservoir-simulation
https://docs.microsoft.com/azure/architecture/example-scenario/infrastructure/reservoir-simulation
https://docs.microsoft.com/azure/architecture/example-scenario/infrastructure/reservoir-simulation
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/oil-and-gas-tank-level-forecasting
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/oil-and-gas-tank-level-forecasting
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/oil-and-gas-tank-level-forecasting
https://docs.microsoft.com/azure/architecture/example-scenario/iot/monitor-manage-loop
https://docs.microsoft.com/azure/architecture/example-scenario/iot/monitor-manage-loop
https://docs.microsoft.com/azure/architecture/example-scenario/iot/monitor-manage-loop

Retail scenarios 333

Retail scenarios
Finally, we'll explore a robust library of architectures in the sister industry to manufacturing:
retail. We'll start by browsing architectures that map back to Chapter 6, Data Architecture.

Retail and e-commerce Azure database architectures
First, let's browse some architectures that focus on database usage. All three scenarios are
run through a browser that's built on Azure App Service (Web Apps). The logs and static
catalog content are kept in Azure Storage. Then we have the main difference, whether the
data catalog is organized in Azure Database for MySQL, Azure Database for PostgreSQL,
or Azure Cosmos DB.

More information
You can browse the three options here:

Retail and e-commerce using Azure MySQL: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/retail-and-ecommerce-using-azure-
database-for-mysql

Retail and e-commerce using Azure PostgreSQL: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/retail-and-ecommerce-using-azure-
database-for-postgresql

Retail and e-commerce using Cosmos DB: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
retail-and-e-commerce-using-cosmos-db

To determine which route to take, we think you'll want to make some higher-level
design decisions.

More information
To further compare these database services (and many other options), see these
Microsoft architectural guides (part of the Azure Data Architecture Guide):

Choosing a data storage technology in Azure: https://docs.
microsoft.com/azure/architecture/data-guide/
technology-choices/data-storage

Understand data store models: https://docs.microsoft.com/
azure/architecture/guide/technology-choices/data-
store-overview

https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-ecommerce-using-azure-database-for-mysql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-ecommerce-using-azure-database-for-mysql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-ecommerce-using-azure-database-for-mysql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-ecommerce-using-azure-database-for-mysql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-ecommerce-using-azure-database-for-postgresql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-ecommerce-using-azure-database-for-postgresql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-ecommerce-using-azure-database-for-postgresql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-ecommerce-using-azure-database-for-postgresql
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-e-commerce-using-cosmos-db
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-e-commerce-using-cosmos-db
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-and-e-commerce-using-cosmos-db
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/data-storage
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/data-storage
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/data-storage
https://docs.microsoft.com/azure/architecture/guide/technology-choices/data-store-overview
https://docs.microsoft.com/azure/architecture/guide/technology-choices/data-store-overview
https://docs.microsoft.com/azure/architecture/guide/technology-choices/data-store-overview

334 Summary and Industry Scenarios

Demand forecasting with Spark on HDInsight
The next step of progression for us involves three analytics-focused scenarios. These
three demand forecasting architectures are similar in name and function, but they are
distinct. The two Price Optimization versions show your data being initiated from your
web app and/or web job. The data is then stored in Azure Blob storage or Azure Data Lake
(depending on which scenario you follow). Spark on HDInsight ingests the raw data, to
build the forecasting models. Azure Data Factory schedules your data flow, and a Power
BI dashboard enables you to visualize your insights.

More information
You can explore these architectures here:

Demand Forecasting + Price Optimization: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
demand-forecasting-price-optimization-marketing

Demand Forecasting and Price Optimization: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/demand-forecasting-and-price-optimization

Demand forecasting with machine learning
This similar scenario (demand forecasting) follows a common pattern that we've seen
previously, where Azure Event Hubs ingests the data, Stream Analytics analyzes it, Azure
Machine Learning forecasts the demand, Azure SQL Database stores the prediction results,
Azure Data Factory orchestrates and schedules, and then Power BI visualizes your data.

More information
You can find this machine learning architecture on the Azure Architecture
Center:

Demand Forecasting: https://docs.microsoft.com/azure/
architecture/solution-ideas/articles/demand-
forecasting

AI retail scenarios
Our next step of progression is to move on to the AI scenarios. The first architecture
(Build a Real-time Recommendation API on Azure) is fully deployable, while the other
retail scenarios are lighter-weight solution ideas.

https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting-price-optimization-marketing
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting-price-optimization-marketing
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting-price-optimization-marketing
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting-and-price-optimization
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting-and-price-optimization
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting-and-price-optimization
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/demand-forecasting

Retail scenarios 335

More information
Browse the following AI retail architectures:

Build a Real-time Recommendation API on Azure: https://docs.
microsoft.com/azure/architecture/reference-
architectures/ai/real-time-recommendation

Commerce Chatbot: https://docs.microsoft.com/azure/
architecture/solution-ideas/articles/commerce-
chatbot

Customer Feedback and Analytics: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
customer-feedback-and-analytics

Personalized Offers: https://docs.microsoft.com/azure/
architecture/solution-ideas/articles/personalized-
offers

Personalized marketing solutions: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
personalized-marketing

Predictive Marketing with Machine Learning: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/predictive-marketing-campaigns-with-
machine-learning-and-spark

Product recommendations for retail using Azure: https://docs.
microsoft.com/azure/architecture/solution-ideas/
articles/product-recommendations

Retail Assistant with Visual Capabilities: https://docs.microsoft.
com/azure/architecture/solution-ideas/articles/
retail-assistant-or-vacation-planner-with-visual-
capabilities

Architecture for buy online, pick up in store
Lastly, we move on to a retail IoT scenario, Buy online, pickup in store. Due to the COVID-
19 pandemic, a lot more customers have been picking up their items (including groceries)
rather than shopping for the items themselves. This solution notifies the customer that the
store has started packing the items and estimates when they will be available for pickup.
The solution also uses Azure Maps to identify the customer's current location, as well as
video analytics to obtain the customer's license plate details (which lets the store know
when the customer pulls up into the parking lot).

https://docs.microsoft.com/azure/architecture/reference-architectures/ai/real-time-recommendation
https://docs.microsoft.com/azure/architecture/reference-architectures/ai/real-time-recommendation
https://docs.microsoft.com/azure/architecture/reference-architectures/ai/real-time-recommendation
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/commerce-chatbot
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/commerce-chatbot
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/commerce-chatbot
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/customer-feedback-and-analytics
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/customer-feedback-and-analytics
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/customer-feedback-and-analytics
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/personalized-offers
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/personalized-offers
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/personalized-offers
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/personalized-marketing
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/personalized-marketing
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/personalized-marketing
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predictive-marketing-campaigns-with-machine-learning-and-spark
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predictive-marketing-campaigns-with-machine-learning-and-spark
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predictive-marketing-campaigns-with-machine-learning-and-spark
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/predictive-marketing-campaigns-with-machine-learning-and-spark
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/product-recommendations
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/product-recommendations
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/product-recommendations
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-assistant-or-vacation-planner-with-visual-capabilities
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-assistant-or-vacation-planner-with-visual-capabilities
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-assistant-or-vacation-planner-with-visual-capabilities
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/retail-assistant-or-vacation-planner-with-visual-capabilities

336 Summary and Industry Scenarios

More information
You'll find the solution details on the Azure Architecture Center:

Retail - Buy online, pickup in store (BOPIS): https://docs.
microsoft.com/azure/architecture/example-scenario/
iot/vertical-buy-online-pickup-in-store

The unique values of this book
The truth is that there are many other books about architecting cloud solutions. You'll also
find a lot of online articles on the subject (as further shown by the architecture solutions
we have listed in this chapter). However, in this book, Stephane has brought to life his
unique map-based approach to exploring and learning Azure architectures. Based on our
success in community and the community's response to his architectures, we believe this
unique approach helps bring the architectures to life.

When we first put this book together, we thought of a few unique qualities that we think
make this book stand out. Although you've read the book, understanding these qualities
might help refresh your memory, as you refer back to certain chapters and sections in
the book. Likewise, you could spend a good amount of time browsing and reviewing the
online resources and the map/diagram files that we have for you. Thus, as you continue to
leverage this book, we hope that its key differentiators resonate with you:

• Map-based: We could have called this an atlas. Mapbook actually isn't a word. We
made it up. So, I suppose it is a word now (as all words are made up). But you don't
have to guess what a mapbook is… it's a book full of maps. And, you'll find even
more maps on our GitHub repo (or the same/similar maps with more details that
are more easily consumed outside of a book). Take a look at the architectures we
feature in this chapter. That's usually the closest you can get to map-based learning.
We owe this perspective and vision to the original community efforts of Microsoft
MVP Stéphane Eyskens. When you know something works, you try going big with
it, and having seen the community's enthusiasm for map-based architectures, we
feel like we went big with this map-based architecture book.

• Expansive: Not only did we go big with maps, but we also went big with a high-
level approach, taken from a variety of perspectives: solutions, infrastructure,
deployment, development, data, and security. Hopefully, this approach leads to new
ways of thinking and opportunities for everyone who reads it.

https://docs.microsoft.com/azure/architecture/example-scenario/iot/vertical-buy-online-pickup-in-store
https://docs.microsoft.com/azure/architecture/example-scenario/iot/vertical-buy-online-pickup-in-store
https://docs.microsoft.com/azure/architecture/example-scenario/iot/vertical-buy-online-pickup-in-store

Summary 337

• Azure-specific: Azure-specific cloud architecture resources are not as common as
you'd think. Most architectural resources (for cloud platforms) tend to be generic
(or more development - and implementation-oriented), and thus they aren't quite as
straightforward or applicable to building your architecture.

But here's the beauty of these differences: because The Azure Cloud-Native Architecture
Mapbook is so unique, most any other architecture and development book (and online
resource) can be used as a complement to this book. You can read this book to get a
high-level perspective, and then you can read another book (or online architectural
guidance) to dig into a specific scenario.

So, what did you gain from reading this book?

Summary
Through the course of this book, you gained a high-level view of what common patterns
of architectures might look like. Hopefully, while reading The Azure Cloud-Native
Architecture Mapbook, you thought of scenarios such as those in this chapter, an actual
architecture that meets your business needs (or at least an applicable sample). Even if
you're a seasoned architect, we suspect that you gained new perspectives on how to
architect your solutions (and perhaps you picked up a few tips and tricks). Ultimately, we
hope that you observed how you can strengthen your organizational weaknesses, bringing
new values to your companies, customers, and/or clients.

In summary, you gained an overall architectural knowledge (or review) of the Microsoft
Azure cloud platform. You dug deeper into the possibilities of building a full Azure
solution, learned best practices for designing and deploying an Azure infrastructure, and
reviewed patterns and possibilities for building a complete solution.

The more you put into your learning from this book, the architectures we recommend,
and exploring additional books and resources, the more you are bound to grow in your
abilities to impact your projects and ultimately the businesses you contribute to. We'll be
the first to congratulate you, but you should be next. You should reflect on your journey
and be proud of what you can accomplish.

By developers,
for developers
Microsoft.Source newsletter

Get technical articles, sample
code, and information on
upcoming events in
Microsoft.Source, the
curated monthly developer
community newsletter.

● Keep up on the latest
 technologies
● Connect with your peers
 at community events
● Learn with
 hands-on resources

Sign upSign up

https://aka.ms/msftsource
https://aka.ms/msftsource

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

340 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Modern Computer Architecture and Organization
Jim Ledin
ISBN: 978-1-83898-439-7

• Get to grips with transistor technology and digital circuit principles

• Discover the functional elements of computer processors

• Understand pipelining and superscalar execution

• Work with floating-point data formats

• Understand the purpose and operation of the supervisor mode

• Implement a complete RISC-V processor in a low-cost FPGA

• Explore the techniques used in virtual machine implementation

• Write a quantum computing program and run it on a quantum computer

https://www.packtpub.com/product/modern-computer-architecture-and-organization/9781838984397

Why subscribe? 341

Software Architecture with C# 9 and .NET 5 - Second Edition

Gabriel Baptista, Francesco Abbruzzese

ISBN: 978-1-80056-604-0

• Use different techniques to overcome real-world architectural challenges and solve
design consideration issues

• Apply architectural approaches such as layered architecture, service-oriented
architecture (SOA), and microservices

• Leverage tools such as containers, Docker, Kubernetes, and Blazor to manage
microservices effectively

• Get up to speed with Azure tools and features for delivering global solutions

• Program and maintain Azure Functions using C# 9 and its latest features

• Understand when it is best to use test-driven development (TDD) as an approach
for software development

• Write automated functional test cases

• Get the best of DevOps principles to enable CI/CD environments

https://www.packtpub.com/product/software-architecture-with-c-9-and-net-5-second-edition/9781800566040

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review ‑ let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
access: 13
accounts: 16
acquainted: 3, 12
acquire: 11
acquiring: 21
acronym: 16
active: 20
activities: 14, 23
additional: 12, 17
add-ons: 15
address: 11, 18, 24
adobe: 16
adopters: 23
advance: 15
advantages: 12
algorithm: 17
allocation: 15-16
analysis: 20
analytics: 6
analyze: 20
api-driven: 14
applicable: 18, 22
archimate: 4
architect: 3-4, 7-9, 11-12, 16, 18-19, 22, 25
artifacts: 22

artificial: 6, 21
aspects: 10, 19, 22-23
assets: 4, 10, 13, 15, 20-21
assistants: 21
associated: 3, 14, 17
attention: 11
audience: 19
audit: 21-22, 24
auditors: 22
automation: 24
azure: 3-7, 10-12, 14-20, 22, 25

B
backend: 9
background: 11
backups: 16
benefits: 6, 16
breaking: 11
bridge: 10, 13
browser: 9
budgets: 20
build: 5, 11, 13, 24-25
building: 4, 10, 15, 21-22, 24
built-in: 11, 13, 20, 24
business: 4, 6, 10-11, 13, 16, 19-24

344 Index

C
caching: 11
capacity: 12, 15
cases: 3, 12, 14, 17
catalog: 7, 17-18
classify: 17
cloud: 3, 5, 8-16, 18-25
cluster: 7
cobit: 22
coding: 10
company: 4, 14-16, 19-21, 23
compliance: 8
components: 6-7, 17
connection: 18
connects: 18, 22
consumer: 12, 14-15, 21, 24
containers: 15-16
contoso: 21-22, 24
control: 15, 22, 24
costs: 12-15, 22, 25
customer: 17, 21

D
database: 9, 16
databricks: 16
dbaas: 16
deep-dive: 4
default: 20
defining: 4, 10, 19-20, 23
deploy: 24
deployment: 16
design: 10, 15-16, 21, 24
designing: 5-6, 20, 23
develop: 21, 24-25
developers: 7, 11
developing: 23
devops: 7

digital: 13, 19-21
directory: 20
domain: 5, 11, 18
domains: 18
drivers: 19-20, 22-25
dynamics: 16

E
elastic: 14, 16
elasticity: 15
enablers: 22-23
encrypted: 9
encryption: 9
enterprise: 4-5, 11, 19, 25
equivalent: 8, 13
exception: 17, 24
executive: 20, 22
exercise: 17, 20, 22
explore: 6, 9-11, 16

F
factors: 3, 19, 21, 25
features: 10-12, 15, 22
fictitious: 25
field: 5, 8
focus: 3, 6, 9-10, 15, 22
focused: 11, 24
framework: 4, 21-22
frameworks: 5, 22-23
front: 7, 16, 19-20, 22

G
gateway: 9, 11
github: 4
given: 4-5, 18, 24

Index 345

H
hardware: 13, 19
high-level: 5-7
highlight: 17
https: 4-5, 10, 17, 22
hybrid: 10, 13

I
idaas: 16
integrate: 10, 20
internal: 15, 21
isaca: 22

K
kubernetes: 7, 15

L
landscape: 4, 6, 11, 21, 25
launch: 19, 21-22
launching: 13, 24
layers: 14, 20
learning: 17, 20
local: 13
lock-in: 15
logic: 14, 18

M
machine: 15, 17
mainstream: 15
managed: 9, 13, 15-16, 21
management: 20-21, 23
market: 13, 19, 21-22, 24
master: 4-5, 18

microsoft: 3, 5, 10, 16-18, 22
migrating: 15
modeling: 4, 6
models: 3, 11-12, 16-17, 19, 24-25
modern: 11, 16, 21

N
network: 9, 15
nodes: 15
non-cloud: 9

O
offload: 11
operates: 23
operations: 12-16, 25
order: 6, 10, 13-14, 16, 20
os-patched: 15
outsourced: 13-14
owasp: 9
owner: 23
ownership: 13

P
perform: 14
performed: 20
perimeter: 9, 15
platform: 3-4, 7, 11, 13, 16, 20-24
practices: 10, 13, 16, 21, 23-24
pre-paid: 12, 16
pre-pays: 14
primary: 10, 17, 24
principles: 20-21, 23-25
private: 5
processes: 10, 13-14, 21, 23
processing: 16

346 Index

products: 17, 20-22
profiles: 4, 25
program: 23
protect: 9
provider: 12-14, 16, 19, 24
public: 5, 8

R
real-world: 17, 23, 25
rebooting: 15
recovery: 13, 16
refactor: 13, 15
resources: 12, 15, 22
reviewed: 8, 17, 21, 25
roadmaps: 5
ruleset: 9
runtime: 8
rushing: 19

S
salesforce: 16
sandbox: 20
scale: 14, 19
scaling: 11
security: 5, 8-9, 15, 20, 24
semantics: 18
serverless: 14-16
servers: 13
services: 6-7, 10-11, 13, 16-19, 21-24
setting: 10, 20
setup: 10
solutions: 4-5, 11, 13, 17-18, 20-21, 24
source: 9-10, 22
storage: 6, 14, 16
stores: 8, 16

strategy: 13, 19-25
structured: 20
systems: 8, 10-11, 13, 21

T
technical: 4, 7-8, 11, 20
techniques: 16
technology: 4, 7, 22-23
togaf: 4-5
toolchain: 24
tools: 20-21
transit: 9
transition: 15, 20
trigger: 14
t-shaped: 5

U
upgrades: 15
usage: 15

V
validation: 11
value: 6, 14, 25
vendor: 15, 24
version: 15
versus: 11, 13, 24
viewpoint: 4
virtual: 15, 23

W
warehouses: 7
workloads: 10, 13-15

	Cover
	FM
	Contributors
	Table of Contents
	Preface
	Section 1:
Solution and Infrastructure
	1
	Getting Started as an Azure Architect
	Technical requirements
	Getting to know architectural duties
	Enterprise architects
	Domain architects
	Solution architects
	Data architects
	Technical architects
	Security architects
	Infrastructure architects
	Application architects
	Azure architects
	Architects versus engineers

	Getting started with the essential cloud vocabulary
	Cloud service models map
	IaaS (Infrastructure as a Service)
	PaaS (Platform as a Service)
	FaaS (Function as a Service)
	CaaS (Containers as a Service)
	DBaaS (Database as a Service)
	XaaS or *aaS (Anything as a Service)

	Introducing Azure architecture maps
	How to read a map

	Understanding the key factors of a successful cloud journey
	Defining the vision with the right stakeholders
	Defining the strategy with the right stakeholders
	Starting implementation with the right stakeholders
	Practical scenario

	Summary

	2
	Solution Architecture
	Technical requirements
	The solution architecture map
	Zooming in on the different workload types
	Understanding systems of engagement
	Understanding systems of record
	Understanding systems of insight
	Understanding systems of interaction (IPaaS)
	Looking at cross-cutting concerns and non-functional requirements
	Looking at cross-cutting concerns and the cloud journey

	Zooming in on containerization
	Solution architecture use case
	Looking at a business scenario
	Using keywords
	Using the solution architecture map against the requirements
	Building the target reference architecture
	Code view of our workflow-based reference architecture
	Looking at the code in action
	Understanding the gaps in our reference architecture

	Summary

	3
	Infrastructure Design
	Technical requirements
	The Azure infrastructure architecture map
	Zooming in on networking
	The most common architecture
	Data center connectivity options
	Zoning
	Routing and firewalling

	Zooming in on monitoring
	Zooming in on high availability and disaster recovery
	Zooming in on backup and restore
	Zooming in on HPC
	AKS infrastructure
	Exploring networking options with AKS
	Exploring deployment options with AKS
	Monitoring AKS
	Exploring AKS storage options
	Scaling AKS
	Exploring miscellaneous aspects
	AKS and service meshes for microservices versus Azure native services
	AKS reference architecture for microservices – cluster boundaries
	AKS reference architecture for microservices – cluster internals

	Summary

	4
	Infrastructure Deployment
	Technical requirements
	Introducing Continuous Integration and Continuous Deployment (CI/CD)
	Introducing the CI/CD process
	Introducing the IaC CI/CD process

	The Azure deployment map
	Getting started with the Azure CLI, PowerShell, and Azure Cloud Shell
	Playing with the Azure CLI from within Azure Cloud Shell
	Using PowerShell from within Azure Cloud Shell
	Combining PowerShell and the Azure CLI from within Azure Cloud Shell

	Understanding the one that rules them all
	Diving into ARM templates
	Getting started with ARM
	Understanding the ARM template deployment methods
	Understanding the ARM template deployment scopes
	Understanding the ARM template deployment modes
	Understanding the anatomy of an ARM template
	Building a concrete example using linked templates

	Getting started with Azure Bicep
	Getting started with Terraform
	Zooming in on a reference architecture with Azure DevOps
	Using a simple approach to an IaC factory
	Using an advanced approach to an IaC factory

	Summary

	Section 2:
Application Development,
Data, and Security
	5
	Application Architecture
	Technical requirements
	Understanding cloud and cloud-native development
	Exploring the Azure Application Architecture Map
	Zooming in on data
	Zooming in on cloud design patterns
	Dealing with cloud-native patterns
	Understanding the COMMODITIES top-level group

	Exploring EDAs
	Inspecting the Azure Service Bus configuration
	Adding the other components to the mix

	Developing microservices
	Using Dapr for microservices
	Understanding Dapr components
	Getting started with Dapr SDKs
	Looking at our scenario
	Developing our solution
	Testing our solution
	Combining Dapr and the API gateway of Azure APIM

	Summary

	6
	Data Architecture
	Technical requirements
	Looking at the data architecture map
	Analyzing traditional data practices
	Introducing the OLAP and OLTP practices
	Introducing the ETL practice
	Introducing the RDBMS practice

	Delving into modern data services and practices
	Introducing the ELT practice
	Exploring NoSQL services
	Learning about object stores

	Diving into big data services
	Ingesting big data
	Exploring big data analytics
	Azure-integrated open source big data solutions

	Introducing AI solutions
	Understanding machine learning and deep learning
	Integrating AI solutions

	Dealing with other data concerns
	Introducing Azure Cognitive Search
	Sharing data with partners and customers (B2B)
	Migrating data
	Governing data

	Getting our hands dirty with a near real-time data streaming use case
	Setting up the Power BI workspace
	Setting up the Azure Event Hubs instance
	Setting up Stream Analytics (SA)
	Testing the code

	Summary

	7
	Security Architecture
	Technical requirements
	Introducing cloud-native security
	Reviewing the security architecture map
	Exploring the recurrent services security features
	Exploring the recurrent data services security features
	Zooming in on encryption
	Managing your security posture
	Zooming in on identity

	Delving into the most recurrent Azure security topics
	Exploring Azure managed identities in depth
	Demystifying SAS
	Understanding APL and its impact on network flows
	Understanding Azure resource firewalls

	Adding the security bits to our Contoso
use case
	Summary

	Section 3:
Summary
	8
	Summary and Industry Scenarios
	Revisiting our architectures
	Sample architecture
	Solution architecture
	Infrastructure architecture
	Azure deployment
	Application architecture
	Data architecture
	Security architecture
	Visiting the verticals

	Automotive and transportation scenarios
	Predictive insights with vehicle telematics
	Predictive aircraft engine monitoring
	IoT analytics for autonomous driving

	Banking and financial services scenarios
	Banking system cloud transformation
	Decentralized trust using blockchain
	Additional financial services architectures

	Gaming scenarios
	Low-latency multiplayer gaming
	Gaming using MySQL or Cosmos DB

	Healthcare scenarios
	Building a telehealth system on Azure
	Medical data storage architectures
	AI healthcare solutions
	Predicting length of stay using SQL Server R Services
	Producing and consuming IoT healthcare data
	Confidential computing on a healthcare platform

	Manufacturing scenarios
	Supply chain track and trace
	Industrial IoT analytics
	AI and analytics manufacturing architectures

	Oil and gas scenarios
	Run reservoir simulation software on Azure
	Oil and gas tank level forecasting
	IoT monitor and manage loops

	Retail scenarios
	Retail and e-commerce Azure database architectures
	Demand forecasting with Spark on HDInsight
	Demand forecasting with machine learning
	AI retail scenarios
	Architecture for buy online, pick up in store

	The unique values of this book
	Summary
	Why subscribe?

	Other Books You May Enjoy
	Index

